File size: 2,864 Bytes
1eefd72 a7bf3db 1eefd72 9aa63b6 1f438f9 194a4fd 9aa63b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: vit-artworkclassifier
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: artbench10-vit
split: test
args: artbench10-vit
metrics:
- name: Accuracy
type: accuracy
value: 0.4887640449438202
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-artworkclassifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset, a subset of the artbench-10 dataset. Train set size 1800, test set size 180, split equally over the 9 classes.
It achieves the following results on the evaluation set:
- Loss: 1.3363
- Accuracy: 0.4888
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4136 | 1.79 | 100 | 1.5093 | 0.5112 |
| 0.7189 | 3.57 | 200 | 1.3363 | 0.4888 |
| 0.2717 | 5.36 | 300 | 1.4907 | 0.5281 |
| 0.1227 | 7.14 | 400 | 1.4826 | 0.5562 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.9.0
- Tokenizers 0.13.2
### Code to Run
def vit_classify(image):
from transformers import ViTFeatureExtractor
from transformers import ViTForImageClassification
import torch
vit = ViTForImageClassification.from_pretrained("oschamp/vit-artworkclassifier")
vit.eval()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
vit.to(device)
model_name_or_path = 'google/vit-base-patch16-224-in21k'
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name_or_path)
#LOAD IMAGE
encoding = feature_extractor(images=image, return_tensors="pt")
encoding.keys()
pixel_values = encoding['pixel_values'].to(device)
outputs = vit(pixel_values)
logits = outputs.logits
prediction = logits.argmax(-1)
return prediction.item() #vit.config.id2label[prediction.item()]
|