Description

A pre-trained model for volumetric (3D) multi-organ segmentation from CT image.

Model Overview

A pre-trained Swin UNETR [1,2] for volumetric (3D) multi-organ segmentation using CT images from Beyond the Cranial Vault (BTCV) Segmentation Challenge dataset [3].

Data

The training data is from the BTCV dataset (Please regist in Synapse and download the Abdomen/RawData.zip). The dataset format needs to be redefined using the following commands:

unzip RawData.zip
mv RawData/Training/img/ RawData/imagesTr
mv RawData/Training/label/ RawData/labelsTr
mv RawData/Testing/img/ RawData/imagesTs
  • Target: Multi-organs
  • Task: Segmentation
  • Modality: CT
  • Size: 30 3D volumes (24 Training + 6 Testing)

Training configuration

The training was performed with at least 32GB-memory GPUs.

Actual Model Input: 96 x 96 x 96

Input and output formats

Input: 1 channel CT image

Output: 14 channels: 0:Background, 1:Spleen, 2:Right Kidney, 3:Left Kideny, 4:Gallbladder, 5:Esophagus, 6:Liver, 7:Stomach, 8:Aorta, 9:IVC, 10:Portal and Splenic Veins, 11:Pancreas, 12:Right adrenal gland, 13:Left adrenal gland

Performance

A graph showing the validation mean Dice for 5000 epochs.


This model achieves the following Dice score on the validation data (our own split from the training dataset):

Mean Dice = 0.8283

Note that mean dice is computed in the original spacing of the input data.

commands example

Execute training:

python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf

Override the train config to execute multi-GPU training:

torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf

Override the train config to execute evaluation with the trained model:

python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf

Execute inference:

python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf

Export checkpoint to TorchScript file:

TorchScript conversion is currently not supported.

Disclaimer

This is an example, not to be used for diagnostic purposes.

References

[1] Hatamizadeh, Ali, et al. "Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images." arXiv preprint arXiv:2201.01266 (2022). https://arxiv.org/abs/2201.01266.

[2] Tang, Yucheng, et al. "Self-supervised pre-training of swin transformers for 3d medical image analysis." arXiv preprint arXiv:2111.14791 (2021). https://arxiv.org/abs/2111.14791.

[3] Landman B, et al. "MICCAI multi-atlas labeling beyond the cranial vault–workshop and challenge." In Proc. of the MICCAI Multi-Atlas Labeling Beyond Cranial Vault—Workshop Challenge 2015 Oct (Vol. 5, p. 12).

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.