File size: 12,643 Bytes
7cdf421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn as nn
import torchaudio
import logging
from .models.multimodal_preprocessors import SimpleTokenizer
from PIL import Image
from pytorchvideo import transforms as pv_transforms
from pytorchvideo.data.clip_sampling import ConstantClipsPerVideoSampler
from pytorchvideo.data.encoded_video import EncodedVideo
from torchvision import transforms
from torchvision.transforms._transforms_video import NormalizeVideo
DEFAULT_AUDIO_FRAME_SHIFT_MS = 10 # in milliseconds
BPE_PATH = "bpe/bpe_simple_vocab_16e6.txt.gz"
def waveform2melspec(waveform, sample_rate, num_mel_bins, target_length):
# Based on https://github.com/YuanGongND/ast/blob/d7d8b4b8e06cdaeb6c843cdb38794c1c7692234c/src/dataloader.py#L102
waveform -= waveform.mean()
fbank = torchaudio.compliance.kaldi.fbank(
waveform,
htk_compat=True,
sample_frequency=sample_rate,
use_energy=False,
window_type="hanning",
num_mel_bins=num_mel_bins,
dither=0.0,
frame_length=25,
frame_shift=DEFAULT_AUDIO_FRAME_SHIFT_MS,
)
# Convert to [mel_bins, num_frames] shape
fbank = fbank.transpose(0, 1)
# Pad to target_length
n_frames = fbank.size(1)
p = target_length - n_frames
# if p is too large (say >20%), flash a warning
if abs(p) / n_frames > 0.2:
logging.warning(
"Large gap between audio n_frames(%d) and "
"target_length (%d). Is the audio_target_length "
"setting correct?",
n_frames,
target_length,
)
# cut and pad
if p > 0:
fbank = torch.nn.functional.pad(fbank, (0, p), mode="constant", value=0)
elif p < 0:
fbank = fbank[:, 0:target_length]
# Convert to [1, mel_bins, num_frames] shape, essentially like a 1
# channel image
fbank = fbank.unsqueeze(0)
return fbank
def get_clip_timepoints(clip_sampler, duration):
# Read out all clips in this video
all_clips_timepoints = []
is_last_clip = False
end = 0.0
while not is_last_clip:
start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None)
all_clips_timepoints.append((start, end))
return all_clips_timepoints
def load_and_transform_vision_data(image_paths, device):
if image_paths is None:
return None
image_ouputs = []
for image_path in image_paths:
data_transform = transforms.Compose(
[
transforms.Resize(
224, interpolation=transforms.InterpolationMode.BICUBIC
),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
if isinstance(image_path, Image.Image):
image = image_path
else:
with open(image_path, "rb") as fopen:
image = Image.open(fopen).convert("RGB")
image = data_transform(image).to(device)
image_ouputs.append(image)
return torch.stack(image_ouputs, dim=0)
def load_and_transform_thermal_data(thermal_paths, device):
if thermal_paths is None:
return None
thermal_ouputs = []
for thermal_path in thermal_paths:
data_transform = transforms.Compose(
[
transforms.Resize(
224, interpolation=transforms.InterpolationMode.BICUBIC
),
transforms.CenterCrop(224),
transforms.ToTensor(),
]
)
with open(thermal_path, "rb") as fopen:
thermal = Image.open(fopen).convert("L")
thermal = data_transform(thermal).to(device)
thermal_ouputs.append(thermal)
return torch.stack(thermal_ouputs, dim=0)
def load_and_transform_text(text, device):
if text is None:
return None
tokenizer = SimpleTokenizer(bpe_path=BPE_PATH)
tokens = [tokenizer(t).unsqueeze(0).to(device) for t in text]
tokens = torch.cat(tokens, dim=0)
return tokens
def load_and_transform_audio_data(
audio_paths,
device,
num_mel_bins=128,
target_length=204,
sample_rate=16000,
clip_duration=2,
clips_per_video=3,
mean=-4.268,
std=9.138,
):
if audio_paths is None:
return None
audio_outputs = []
clip_sampler = ConstantClipsPerVideoSampler(
clip_duration=clip_duration, clips_per_video=clips_per_video
)
for audio_path in audio_paths:
waveform, sr = torchaudio.load(audio_path)
if sample_rate != sr:
waveform = torchaudio.functional.resample(
waveform, orig_freq=sr, new_freq=sample_rate
)
all_clips_timepoints = get_clip_timepoints(
clip_sampler, waveform.size(1) / sample_rate
)
all_clips = []
for clip_timepoints in all_clips_timepoints:
waveform_clip = waveform[
:,
int(clip_timepoints[0] * sample_rate): int(
clip_timepoints[1] * sample_rate
),
]
waveform_melspec = waveform2melspec(
waveform_clip, sample_rate, num_mel_bins, target_length
)
all_clips.append(waveform_melspec)
normalize = transforms.Normalize(mean=mean, std=std)
all_clips = [normalize(ac).to(device) for ac in all_clips]
all_clips = torch.stack(all_clips, dim=0)
audio_outputs.append(all_clips)
return torch.stack(audio_outputs, dim=0)
def get_clip_timepoints(clip_sampler, duration):
# Read out all clips in this video
all_clips_timepoints = []
is_last_clip = False
end = 0.0
while not is_last_clip:
start, end, _, _, is_last_clip = clip_sampler(end, duration, annotation=None)
all_clips_timepoints.append((start, end))
return all_clips_timepoints
def crop_boxes(boxes, x_offset, y_offset):
"""
Perform crop on the bounding boxes given the offsets.
Args:
boxes (ndarray or None): bounding boxes to perform crop. The dimension
is `num boxes` x 4.
x_offset (int): cropping offset in the x axis.
y_offset (int): cropping offset in the y axis.
Returns:
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
cropped_boxes = boxes.copy()
cropped_boxes[:, [0, 2]] = boxes[:, [0, 2]] - x_offset
cropped_boxes[:, [1, 3]] = boxes[:, [1, 3]] - y_offset
return cropped_boxes
def uniform_crop(images, size, spatial_idx, boxes=None, scale_size=None):
"""
Perform uniform spatial sampling on the images and corresponding boxes.
Args:
images (tensor): images to perform uniform crop. The dimension is
`num frames` x `channel` x `height` x `width`.
size (int): size of height and weight to crop the images.
spatial_idx (int): 0, 1, or 2 for left, center, and right crop if width
is larger than height. Or 0, 1, or 2 for top, center, and bottom
crop if height is larger than width.
boxes (ndarray or None): optional. Corresponding boxes to images.
Dimension is `num boxes` x 4.
scale_size (int): optinal. If not None, resize the images to scale_size before
performing any crop.
Returns:
cropped (tensor): images with dimension of
`num frames` x `channel` x `size` x `size`.
cropped_boxes (ndarray or None): the cropped boxes with dimension of
`num boxes` x 4.
"""
assert spatial_idx in [0, 1, 2]
ndim = len(images.shape)
if ndim == 3:
images = images.unsqueeze(0)
height = images.shape[2]
width = images.shape[3]
if scale_size is not None:
if width <= height:
width, height = scale_size, int(height / width * scale_size)
else:
width, height = int(width / height * scale_size), scale_size
images = torch.nn.functional.interpolate(
images,
size=(height, width),
mode="bilinear",
align_corners=False,
)
y_offset = int(math.ceil((height - size) / 2))
x_offset = int(math.ceil((width - size) / 2))
if height > width:
if spatial_idx == 0:
y_offset = 0
elif spatial_idx == 2:
y_offset = height - size
else:
if spatial_idx == 0:
x_offset = 0
elif spatial_idx == 2:
x_offset = width - size
cropped = images[:, :, y_offset : y_offset + size, x_offset : x_offset + size]
cropped_boxes = crop_boxes(boxes, x_offset, y_offset) if boxes is not None else None
if ndim == 3:
cropped = cropped.squeeze(0)
return cropped, cropped_boxes
class SpatialCrop(nn.Module):
"""
Convert the video into 3 smaller clips spatially. Must be used after the
temporal crops to get spatial crops, and should be used with
-2 in the spatial crop at the slowfast augmentation stage (so full
frames are passed in here). Will return a larger list with the
3x spatial crops as well.
"""
def __init__(self, crop_size: int = 224, num_crops: int = 3):
super().__init__()
self.crop_size = crop_size
if num_crops == 3:
self.crops_to_ext = [0, 1, 2]
self.flipped_crops_to_ext = []
elif num_crops == 1:
self.crops_to_ext = [1]
self.flipped_crops_to_ext = []
else:
raise NotImplementedError("Nothing else supported yet")
def forward(self, videos):
"""
Args:
videos: A list of C, T_I_V_A.txt, H, W videos.
Returns:
videos: A list with 3x the number of elements. Each video converted
to C, T_I_V_A.txt, H', W' by spatial cropping.
"""
assert isinstance(videos, list), "Must be a list of videos after temporal crops"
assert all([video.ndim == 4 for video in videos]), "Must be (C,T_I_V_A.txt,H,W)"
res = []
for video in videos:
for spatial_idx in self.crops_to_ext:
res.append(uniform_crop(video, self.crop_size, spatial_idx)[0])
if not self.flipped_crops_to_ext:
continue
flipped_video = transforms.functional.hflip(video)
for spatial_idx in self.flipped_crops_to_ext:
res.append(uniform_crop(flipped_video, self.crop_size, spatial_idx)[0])
return res
def load_and_transform_video_data(
video_paths,
device,
clip_duration=2,
clips_per_video=5,
sample_rate=16000,
):
if video_paths is None:
return None
video_outputs = []
video_transform = transforms.Compose(
[
pv_transforms.ShortSideScale(224),
NormalizeVideo(
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
]
)
clip_sampler = ConstantClipsPerVideoSampler(
clip_duration=clip_duration, clips_per_video=clips_per_video
)
frame_sampler = pv_transforms.UniformTemporalSubsample(num_samples=clip_duration)
for video_path in video_paths:
video = EncodedVideo.from_path(
video_path,
decoder="decord",
decode_audio=False,
# **{"sample_rate": sample_rate},
)
all_clips_timepoints = get_clip_timepoints(clip_sampler, video.duration)
all_video = []
for clip_timepoints in all_clips_timepoints:
# Read the clip, get frames
clip = video.get_clip(clip_timepoints[0], clip_timepoints[1])
if clip is None:
raise ValueError("No clip found")
video_clip = frame_sampler(clip["video"])
video_clip = video_clip / 255.0 # since this is float, need 0-1
all_video.append(video_clip)
all_video = [video_transform(clip) for clip in all_video]
all_video = SpatialCrop(224, num_crops=3)(all_video)
all_video = torch.stack(all_video, dim=0)
video_outputs.append(all_video)
return torch.stack(video_outputs, dim=0).to(device)
|