File size: 6,064 Bytes
7cdf421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
from model.anyToImageVideoAudio import NextGPTModel
import torch
import json
from config import *
import matplotlib.pyplot as plt
from diffusers.utils import export_to_video
import scipy


def predict(
        input,
        image_path=None,
        audio_path=None,
        video_path=None,
        thermal_path=None,
        max_tgt_len=200,
        top_p=10.0,
        temperature=0.1,
        history=None,
        modality_cache=None,
        filter_value=-float('Inf'), min_word_tokens=0,
        gen_scale_factor=10.0, max_num_imgs=1,
        stops_id=None,
        load_sd=True,
        generator=None,
        guidance_scale_for_img=7.5,
        num_inference_steps_for_img=50,
        guidance_scale_for_vid=7.5,
        num_inference_steps_for_vid=50,
        max_num_vids=1,
        height=320,
        width=576,
        num_frames=24,
        guidance_scale_for_aud=7.5,
        num_inference_steps_for_aud=50,
        max_num_auds=1,
        audio_length_in_s=9,
        ENCOUNTERS=1,
):
    if image_path is None and audio_path is None and video_path is None and thermal_path is None:
        # return [(input, "There is no input data provided! Please upload your data and start the conversation.")]
        print('no image, audio, video, and thermal are input')
    else:
        print(
            f'[!] image path: {image_path}\n[!] audio path: {audio_path}\n[!] video path: {video_path}\n[!] thermal path: {thermal_path}')

    # prepare the prompt
    prompt_text = ''
    if history != None:
        for idx, (q, a) in enumerate(history):
            if idx == 0:
                prompt_text += f'{q}\n### Assistant: {a}\n###'
            else:
                prompt_text += f' Human: {q}\n### Assistant: {a}\n###'
        prompt_text += f'### Human: {input}'
    else:
        prompt_text += f'### Human: {input}'

    print('prompt_text: ', prompt_text)

    response = model.generate({
        'prompt': prompt_text,
        'image_paths': [image_path] if image_path else [],
        'audio_paths': [audio_path] if audio_path else [],
        'video_paths': [video_path] if video_path else [],
        'thermal_paths': [thermal_path] if thermal_path else [],
        'top_p': top_p,
        'temperature': temperature,
        'max_tgt_len': max_tgt_len,
        'modality_embeds': modality_cache,
        'filter_value': filter_value, 'min_word_tokens': min_word_tokens,
        'gen_scale_factor': gen_scale_factor, 'max_num_imgs': max_num_imgs,
        'stops_id': stops_id,
        'load_sd': load_sd,
        'generator': generator,
        'guidance_scale_for_img': guidance_scale_for_img,
        'num_inference_steps_for_img': num_inference_steps_for_img,

        'guidance_scale_for_vid': guidance_scale_for_vid,
        'num_inference_steps_for_vid': num_inference_steps_for_vid,
        'max_num_vids': max_num_vids,
        'height': height,
        'width': width,
        'num_frames': num_frames,

        'guidance_scale_for_aud': guidance_scale_for_aud,
        'num_inference_steps_for_aud': num_inference_steps_for_aud,
        'max_num_auds': max_num_auds,
        'audio_length_in_s': audio_length_in_s,
        'ENCOUNTERS': ENCOUNTERS,

    })
    return response


if __name__ == '__main__':
    # init the model

    g_cuda = torch.Generator(device='cuda').manual_seed(1337)
    args = {'model': 'nextgpt',
            'nextgpt_ckpt_path': '../ckpt/delta_ckpt/nextgpt/7b_tiva_v0/',
            'max_length': 128,
            'stage': 3,
            'root_dir': '../',
            'mode': 'validate',
            }
    args.update(load_config(args))

    model = NextGPTModel(**args)
    delta_ckpt = torch.load(os.path.join(args['nextgpt_ckpt_path'], 'pytorch_model.pt'), map_location=torch.device('cuda'))
    # print(delta_ckpt)
    model.load_state_dict(delta_ckpt, strict=False)
    model = model.eval().half().cuda()
    # model = model.eval().cuda()
    print(f'[!] init the 7b model over ...')

    """Override Chatbot.postprocess"""
    max_tgt_length = 150
    top_p = 1.0
    temperature = 0.4
    modality_cache = None

    prompt = 'show me a video. a woman walk a dop in the park.'

    history = []

    output = predict(input=prompt, history=history,
                     max_tgt_len=max_tgt_length, top_p=top_p,
                     temperature=temperature, modality_cache=modality_cache,
                     filter_value=-float('Inf'), min_word_tokens=10,
                     gen_scale_factor=4.0, max_num_imgs=1,
                     stops_id=[[835]],
                     load_sd=True,
                     generator=g_cuda,
                     guidance_scale_for_img=7.5,
                     num_inference_steps_for_img=50,
                     guidance_scale_for_vid=7.5,
                     num_inference_steps_for_vid=50,
                     max_num_vids=1,
                     height=320,
                     width=576,
                     num_frames=24,
                     ENCOUNTERS=1
                     )

    # print("output: ", output)

    for i in output:
        if isinstance(i, str):
            print(i)
        elif 'img' in i.keys():
            for m in i['img']:
                if isinstance(m, str):
                    print(m)
                else:
                    m[0].save(f'./assets/images/{prompt}.jpg')

        elif 'vid' in i.keys():
            for idx, m in enumerate(i['vid']):
                if isinstance(m, str):
                    print(m)
                else:
                    video_path = export_to_video(video_frames=m, output_video_path=f'./assets/videos/{prompt}.mp4')
                    print("video_path: ", video_path)
        elif 'aud' in i.keys():
            for idx, m in enumerate(i['aud']):
                if isinstance(m, str):
                    print(m)
                else:
                    audio_path = f'./assets/audios/{prompt}.wav'
                    scipy.io.wavfile.write(audio_path, rate=16000, data=m)
                    print("video_path: ", audio_path)
        else:
            pass