File size: 2,072 Bytes
a8fc527 2413900 a8fc527 2413900 0640b7a 090404d 0640b7a 74a1749 090404d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model:
- deepseek-ai/deepseek-coder-6.7b-instruct
- m-a-p/OpenCodeInterpreter-DS-6.7B
- deepseek-ai/deepseek-coder-6.7b-base
library_name: transformers
tags:
- mergekit
- merge
---
# output-model-directory
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) as a base.
### Models Merged
The following models were included in the merge:
* [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct)
* [m-a-p/OpenCodeInterpreter-DS-6.7B](https://huggingface.co/m-a-p/OpenCodeInterpreter-DS-6.7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: deepseek-ai/deepseek-coder-6.7b-instruct
parameters:
density: [1, 0.7, 0.1] # density gradient
weight: 1.0
- model: m-a-p/OpenCodeInterpreter-DS-6.7B
parameters:
density: 0.5
weight: [0, 0.3, 0.7, 1] # weight gradient
merge_method: ties
base_model: deepseek-ai/deepseek-coder-6.7b-base
parameters:
normalize: true
int8_mask: true
dtype: float16
```
### How to Use
```
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("m-a-p/OpenCodeInterpreter-DS-6.7B")
model = AutoModelForCausalLM.from_pretrained("ori-cloud/ds-trinity-7b-v1", torch_dtype=torch.bfloat16,
device_map="auto")
prompt = "#write a quick sort algorithm"
inputs = tokenizer.apply_chat_template(
[{'role': 'user', 'content': prompt }],
return_tensors="pt"
).to(model.device)
outputs = model.generate(
inputs,
max_new_tokens=1024,
do_sample=False,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
``` |