Model Card for Model ID
This modelcard aims to be a base template for new models. It has been generated using this raw template.
Model Details
Model Description
- Developed by: [More Information Needed]
- Funded by [optional]: [More Information Needed]
- Shared by [optional]: [More Information Needed]
- Model type: [More Information Needed]
- Language(s) (NLP): [More Information Needed]
- License: [More Information Needed]
- Finetuned from model [optional]: [More Information Needed]
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Installation
pip install "huggingface-hub[cli]"
huggingface-cli login # Paste access token w/ read access to this repository.
# Tokens look like this: hf_*****
export TEMP_DIR=$(mktemp -d)
huggingface-cli download optimizerai/vocos --exclude "*.safetensors" --local-dir $TEMP_DIR
pip install "file://$TEMP_DIR"
Or for an automated approach:
pip install "huggingface-hub[cli]"
export HF_TOKEN=hf_******
export TEMP_DIR=$(mktemp -d)
huggingface-cli download optimizerai/vocos --exclude "*.safetensors" --local-dir $TEMP_DIR
pip install "file://$TEMP_DIR"
If you want to hardcode your token for some reason:
pip install "huggingface-hub[cli]"
export TEMP_DIR=$(mktemp -d)
huggingface-cli download optimizerai/vocos --exclude "*.safetensors" --local-dir $TEMP_DIR --token hf_*****
pip install "file://$TEMP_DIR"
Example usage
import torch
from vocos import get_voco
mel_voco = get_voco("mel")
encodec_voco = get_voco("encodec")
dac_voco = get_voco("dac")
dac_vae_voco = get_voco("dacvae")
oobleck_voco = get_voco("oobleck")
audio = torch.randn(1, 44100, 2) # [batch, audio_length, audio_channels]
latents = oobleck_voco.encode(audio) # [batch, encoded_length, latent_dim]
recon = oobleck_voco.decode(latents) # [batch, recon_length, audio_channels]
Sampling rate: oobleck_voco.sampling_rate
Audio channels: oobleck_voco.channel
Length conversion:
import torch
from vocos import get_voco
oobleck_voco = get_voco("oobleck")
audio_length = 44100
encode_length = oobleck_voco.encode_length(audio_length)
recon_length = oobleck_voco.decode_length(encode_length)
audio = torch.randn(1, audio_length, oobleck_voco.channel)
latent = oobleck_voco.encode(audio)
recon = oobleck_voco.decode(latent)
assert encode_length == latent.shape[1]
assert recon_length == recon.shape[1]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]