Edit model card

UperNet, ConvNeXt small-sized backbone

UperNet framework for semantic segmentation, leveraging a ConvNeXt backbone. UperNet was introduced in the paper Unified Perceptual Parsing for Scene Understanding by Xiao et al.

Combining UperNet with a ConvNeXt backbone was introduced in the paper A ConvNet for the 2020s.

Disclaimer: The team releasing UperNet + ConvNeXt did not write a model card for this model so this model card has been written by the Hugging Face team.

Model description

UperNet is a framework for semantic segmentation. It consists of several components, including a backbone, a Feature Pyramid Network (FPN) and a Pyramid Pooling Module (PPM).

Any visual backbone can be plugged into the UperNet framework. The framework predicts a semantic label per pixel.

UperNet architecture

Intended uses & limitations

You can use the raw model for semantic segmentation. See the model hub to look for fine-tuned versions (with various backbones) on a task that interests you.

How to use

For code examples, we refer to the documentation.

Downloads last month
Hosted inference API
This model can be loaded on the Inference API on-demand.

Spaces using openmmlab/upernet-convnext-small 47