File size: 15,237 Bytes
cbe6208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
"""
A script to run backtest for PVNet and the summation model for UK regional and national
Use:
- This script uses hydra to construct the config, just like in `run.py`. So you need to make sure
that the data config is set up appropriate for the model being run in this script
- The PVNet and summation model checkpoints; the time range over which to make predictions are made;
and the output directory where the results near the top of the script as hard coded user
variables. These should be changed.
```
python backtest_uk_gsp.py
```
"""
try:
import torch.multiprocessing as mp
mp.set_start_method("spawn", force=True)
mp.set_sharing_strategy("file_system")
except RuntimeError:
pass
import logging
import os
import sys
import hydra
import numpy as np
import pandas as pd
import torch
import xarray as xr
from ocf_data_sampler.sample.base import batch_to_tensor, copy_batch_to_device
from ocf_datapipes.batch import (
BatchKey,
NumpyBatch,
)
from ocf_datapipes.config.load import load_yaml_configuration
from ocf_datapipes.load import OpenGSP
from ocf_datapipes.training.common import _get_datapipes_dict
from ocf_datapipes.training.pvnet_all_gsp import construct_sliced_data_pipeline, create_t0_datapipe
from ocf_datapipes.utils.consts import ELEVATION_MEAN, ELEVATION_STD
from omegaconf import DictConfig
# TODO: Having this script rely on pvnet_app sets up a circular dependency. The function
# `preds_to_dataarray()` should probably be moved here
from pvnet_app.utils import preds_to_dataarray
from torch.utils.data import DataLoader
from torch.utils.data.datapipes.iter import IterableWrapper
from tqdm import tqdm
from pvnet.load_model import get_model_from_checkpoints
# ------------------------------------------------------------------
# USER CONFIGURED VARIABLES
output_dir = "/mnt/disks/extra_batches/test_backtest"
# Local directory to load the PVNet checkpoint from. By default this should pull the best performing
# checkpoint on the val set
model_chckpoint_dir = "/home/jamesfulton/repos/PVNet/checkpoints/q911tei5"
# Local directory to load the summation model checkpoint from. By default this should pull the best
# performing checkpoint on the val set. If set to None a simple sum is used instead
summation_chckpoint_dir = (
"/home/jamesfulton/repos/PVNet_summation/checkpoints/pvnet_summation/73oa4w9t"
)
# Forecasts will be made for all available init times between these
start_datetime = "2022-05-08 00:00"
end_datetime = "2022-05-08 00:30"
# ------------------------------------------------------------------
# SET UP LOGGING
logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
# ------------------------------------------------------------------
# DERIVED VARIABLES
# This will run on GPU if it exists
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------------------------------------------------
# GLOBAL VARIABLES
# The frequency of the GSP data
FREQ_MINS = 30
# When sun as elevation below this, the forecast is set to zero
MIN_DAY_ELEVATION = 0
# All regional GSP IDs - not including national which is treated separately
ALL_GSP_IDS = np.arange(1, 318)
# ------------------------------------------------------------------
# FUNCTIONS
def get_gsp_ds(config_path: str) -> xr.Dataset:
"""Load GSP data from the path in the data config.
Args:
config_path: Path to the data configuration file
Returns:
xarray.Dataset of PVLive truths and capacities
"""
config = load_yaml_configuration(config_path)
gsp_datapipe = OpenGSP(gsp_pv_power_zarr_path=config.input_data.gsp.gsp_zarr_path)
ds_gsp = next(iter(gsp_datapipe))
return ds_gsp
def get_available_t0_times(start_datetime, end_datetime, config_path):
"""Filter a list of t0 init-times to those for which all required input data is available.
Args:
start_datetime: First potential t0 time
end_datetime: Last potential t0 time
config_path: Path to data config file
Returns:
pandas.DatetimeIndex of the init-times available for required inputs
"""
start_datetime = pd.Timestamp(start_datetime)
end_datetime = pd.Timestamp(end_datetime)
# Open all the input data so we can check what of the potential data init times we have input
# data for
datapipes_dict = _get_datapipes_dict(config_path, production=False)
# Pop out the config file
config = datapipes_dict.pop("config")
# We are going to abuse the `create_t0_datapipe()` function to find the init-times in
# potential_init_times which we have input data for. To do this, we will feed in some fake GSP
# data which has the potential_init_times as timestamps. This is a bit hacky but works for now
# Set up init-times we would like to make predictions for
potential_init_times = pd.date_range(start_datetime, end_datetime, freq=f"{FREQ_MINS}min")
# We buffer the potential init-times so that we don't lose any init-times from the
# start and end. Again this is a hacky step
history_duration = pd.Timedelta(config.input_data.gsp.history_minutes, "min")
forecast_duration = pd.Timedelta(config.input_data.gsp.forecast_minutes, "min")
buffered_potential_init_times = pd.date_range(
start_datetime - history_duration, end_datetime + forecast_duration, freq=f"{FREQ_MINS}min"
)
ds_fake_gsp = buffered_potential_init_times.to_frame().to_xarray().rename({"index": "time_utc"})
ds_fake_gsp = ds_fake_gsp.rename({0: "gsp_pv_power_mw"})
ds_fake_gsp = ds_fake_gsp.expand_dims("gsp_id", axis=1)
ds_fake_gsp = ds_fake_gsp.assign_coords(
gsp_id=[0],
x_osgb=("gsp_id", [0]),
y_osgb=("gsp_id", [0]),
)
ds_fake_gsp = ds_fake_gsp.gsp_pv_power_mw.astype(float) * 1e-18
# Overwrite the GSP data which is already in the datapipes dict
datapipes_dict["gsp"] = IterableWrapper([ds_fake_gsp])
# Use create_t0_datapipe to get datapipe of init-times
t0_datapipe = create_t0_datapipe(
datapipes_dict,
configuration=config,
shuffle=False,
)
# Create a full list of available init-times
available_init_times = pd.to_datetime([t0 for t0 in t0_datapipe])
logger.info(
f"{len(available_init_times)} out of {len(potential_init_times)} "
"requested init-times have required input data"
)
return available_init_times
def get_times_datapipe(config_path):
"""Create init-time datapipe
Args:
config_path: Path to data config file
Returns:
Datapipe: A Datapipe yielding init-times
"""
# Filter the init-times to times we have all input data for
available_target_times = get_available_t0_times(
start_datetime,
end_datetime,
config_path,
)
num_t0s = len(available_target_times)
# Save the init-times which predictions are being made for. This is really helpful to check
# whilst the backtest is running since it takes a long time. This lets you see what init-times
# the backtest will end up producing
available_target_times.to_frame().to_csv(f"{output_dir}/t0_times.csv")
# Create times datapipe so each worker receives 317 copies of the same datetime for its batch
t0_datapipe = IterableWrapper(available_target_times)
t0_datapipe = t0_datapipe.sharding_filter()
t0_datapipe = t0_datapipe.set_length(num_t0s)
return t0_datapipe
class ModelPipe:
"""A class to conveniently make and process predictions from batches"""
def __init__(self, model, summation_model, ds_gsp: xr.Dataset):
"""A class to conveniently make and process predictions from batches
Args:
model: PVNet GSP level model
summation_model: Summation model to make national forecast from GSP level forecasts
ds_gsp:xarray dataset of PVLive true values and capacities
"""
self.model = model
self.summation_model = summation_model
self.ds_gsp = ds_gsp
def predict_batch(self, batch: NumpyBatch) -> xr.Dataset:
"""Run the batch through the model and compile the predictions into an xarray DataArray
Args:
batch: A batch of samples with inputs for each GSP for the same init-time
Returns:
xarray.Dataset of all GSP and national forecasts for the batch
"""
# Unpack some variables from the batch
id0 = batch[BatchKey.gsp_t0_idx]
t0 = batch[BatchKey.gsp_time_utc].cpu().numpy().astype("datetime64[s]")[0, id0]
n_valid_times = len(batch[BatchKey.gsp_time_utc][0, id0 + 1 :])
ds_gsp = self.ds_gsp
model = self.model
summation_model = self.summation_model
# Get valid times for this forecast
valid_times = pd.to_datetime(
[t0 + np.timedelta64((i + 1) * FREQ_MINS, "m") for i in range(n_valid_times)]
)
# Get effective capacities for this forecast
gsp_capacities = ds_gsp.effective_capacity_mwp.sel(
time_utc=t0, gsp_id=slice(1, None)
).values
national_capacity = ds_gsp.effective_capacity_mwp.sel(time_utc=t0, gsp_id=0).item()
# Get the solar elevations. We need to un-normalise these from the values in the batch
elevation = batch[BatchKey.gsp_solar_elevation] * ELEVATION_STD + ELEVATION_MEAN
# We only need elevation mask for forecasted values, not history
elevation = elevation[:, id0 + 1 :]
# Make mask dataset for sundown
da_sundown_mask = xr.DataArray(
data=elevation < MIN_DAY_ELEVATION,
dims=["gsp_id", "target_datetime_utc"],
coords=dict(
gsp_id=ALL_GSP_IDS,
target_datetime_utc=valid_times,
),
)
with torch.no_grad():
# Run batch through model to get 0-1 predictions for all GSPs
device_batch = copy_batch_to_device(batch_to_tensor(batch), device)
y_normed_gsp = model(device_batch).detach().cpu().numpy()
da_normed_gsp = preds_to_dataarray(y_normed_gsp, model, valid_times, ALL_GSP_IDS)
# Multiply normalised forecasts by capacities and clip negatives
da_abs_gsp = da_normed_gsp.clip(0, None) * gsp_capacities[:, None, None]
# Apply sundown mask
da_abs_gsp = da_abs_gsp.where(~da_sundown_mask).fillna(0.0)
# Make national predictions using summation model
if summation_model is not None:
with torch.no_grad():
# Construct sample for the summation model
summation_inputs = {
"pvnet_outputs": torch.Tensor(y_normed_gsp[np.newaxis]).to(device),
"effective_capacity": (
torch.Tensor(gsp_capacities / national_capacity)
.to(device)
.unsqueeze(0)
.unsqueeze(-1)
),
}
# Run batch through the summation model
y_normed_national = (
summation_model(summation_inputs).detach().squeeze().cpu().numpy()
)
# Convert national predictions to DataArray
da_normed_national = preds_to_dataarray(
y_normed_national[np.newaxis], summation_model, valid_times, gsp_ids=[0]
)
# Multiply normalised forecasts by capacities and clip negatives
da_abs_national = da_normed_national.clip(0, None) * national_capacity
# Apply sundown mask - All GSPs must be masked to mask national
da_abs_national = da_abs_national.where(~da_sundown_mask.all(dim="gsp_id")).fillna(0.0)
# If no summation model, make national predictions using simple sum
else:
da_abs_national = (
da_abs_gsp.sum(dim="gsp_id")
.expand_dims(dim="gsp_id", axis=0)
.assign_coords(gsp_id=[0])
)
# Concat the regional GSP and national predictions
da_abs_all = xr.concat([da_abs_national, da_abs_gsp], dim="gsp_id")
ds_abs_all = da_abs_all.to_dataset(name="hindcast")
ds_abs_all = ds_abs_all.expand_dims(dim="init_time_utc", axis=0).assign_coords(
init_time_utc=[t0]
)
return ds_abs_all
def get_datapipe(config_path: str) -> NumpyBatch:
"""Construct datapipe yielding batches of concurrent samples for all GSPs
Args:
config_path: Path to the data configuration file
Returns:
NumpyBatch: Concurrent batch of samples for each GSP
"""
# Construct location and init-time datapipes
t0_datapipe = get_times_datapipe(config_path)
# Construct sample datapipes
data_pipeline = construct_sliced_data_pipeline(
config_path,
t0_datapipe,
)
# Convert to tensor for model
data_pipeline = data_pipeline.map(batch_to_tensor).set_length(len(t0_datapipe))
return data_pipeline
@hydra.main(config_path="../configs", config_name="config.yaml", version_base="1.2")
def main(config: DictConfig):
"""Runs the backtest"""
dataloader_kwargs = dict(
shuffle=False,
batch_size=None,
sampler=None,
batch_sampler=None,
# Number of workers set in the config file
num_workers=config.datamodule.num_workers,
collate_fn=None,
pin_memory=False,
drop_last=False,
timeout=0,
worker_init_fn=None,
prefetch_factor=config.datamodule.prefetch_factor,
persistent_workers=False,
)
# Set up output dir
os.makedirs(output_dir)
# Create concurrent batch datapipe
# Each batch includes a sample for each of the 317 GSPs for a single init-time
batch_pipe = get_datapipe(config.datamodule.configuration)
num_batches = len(batch_pipe)
# Load the GSP data as an xarray object
ds_gsp = get_gsp_ds(config.datamodule.configuration)
# Create a dataloader for the concurrent batches and use multiprocessing
dataloader = DataLoader(batch_pipe, **dataloader_kwargs)
# Load the PVNet model and summation model
model, *_ = get_model_from_checkpoints([model_chckpoint_dir], val_best=True)
model = model.eval().to(device)
if summation_chckpoint_dir is None:
summation_model = None
else:
summation_model, *_ = get_model_from_checkpoints([summation_chckpoint_dir], val_best=True)
summation_model = summation_model.eval().to(device)
# Create object to make predictions for each input batch
model_pipe = ModelPipe(model, summation_model, ds_gsp)
# Loop through the batches
pbar = tqdm(total=num_batches)
for i, batch in zip(range(num_batches), dataloader):
# Make predictions for the init-time
ds_abs_all = model_pipe.predict_batch(batch)
t0 = ds_abs_all.init_time_utc.values[0]
# Save the predictioons
filename = f"{output_dir}/{t0}.nc"
ds_abs_all.to_netcdf(filename)
pbar.update()
# Close down
pbar.close()
del dataloader
if __name__ == "__main__":
main()
|