File size: 99,500 Bytes
1624e76 f8f1eff 1624e76 782358e 1624e76 782358e 1624e76 f8f1eff 1624e76 f8f1eff 1624e76 f8f1eff 1624e76 c6b73d9 1624e76 c6b73d9 b63f25e 1624e76 f8f1eff 1624e76 f8f1eff 1624e76 5a85a4e 1624e76 5a85a4e 1624e76 f2b0065 1624e76 b63f25e 1624e76 b63f25e 1624e76 f2b0065 1624e76 f2b0065 1624e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 |
# coding=utf-8
# Copyright 2022 The OpenBMB Team The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CpmBee model."""
import copy
import math
from collections import UserDict
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers.generation.beam_search import BeamHypotheses, BeamSearchScorer
from transformers.generation.streamers import BaseStreamer
from transformers.generation.utils import (
GenerationConfig,
LogitsProcessorList,
StoppingCriteriaList,
dist,
inspect,
is_deepspeed_zero3_enabled,
warnings,
)
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, ModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_cpmbee import CpmBeeConfig
from .tokenization_cpmbee import CpmBeeTokenizer
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "openbmb/cpm-bee-10b"
_CONFIG_FOR_DOC = "CpmBeeConfig"
CPMBEE_PRETRAINED_MODEL_ARCHIVE_LIST = [
"openbmb/cpm-bee-10b",
"openbmb/cpm-bee-5b",
"openbmb/cpm-bee-2b",
"openbmb/cpm-bee-1b",
# See all CPMBee models at https://huggingface.co/models?filter=cpmbee
]
class CpmBeeLinear(nn.Linear):
def __init__(self, dim_in, dim_out, dtype):
"""
Construct a linear for CPMBee. It contains a scale operation.
"""
super().__init__(dim_in, dim_out, bias=False)
self.dim_in = self.in_features = dim_in
self.dim_out = self.out_features = dim_out
self.weight = torch.nn.parameter.Parameter(torch.empty((dim_out, dim_in), dtype=dtype))
def forward(self, x: torch.Tensor):
"""
Args:
x (`torch.Tensor` of shape `(batch, seq_len, dim_in)`): The input of linear layer
Returns:
`torch.Tensor` of shape `(batch, seq_len, dim_out)`: The output of the linear transform y.
"""
x = nn.functional.linear(x, self.weight)
x = x / math.sqrt(self.dim_in)
return x
class CpmBeeLayerNorm(nn.Module):
"""
We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details."
"""
def __init__(self, config: CpmBeeConfig):
super().__init__()
self.eps = config.eps
self.dim_norm = config.hidden_size
self.weight = nn.Parameter(torch.empty(config.hidden_size, dtype=config.torch_dtype))
def forward(self, hidden_states: torch.Tensor):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
"""
if hidden_states.size(-1) != self.dim_norm:
raise AssertionError("hidden_states.size(-1) != self.dim_norm")
old_dtype = hidden_states.dtype
variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight
return hidden_states
class CpmBeeAttention(nn.Module):
def __init__(self, config: CpmBeeConfig):
super().__init__()
self.dim_model = config.hidden_size
self.num_heads = config.num_attention_heads
self.dim_head = config.dim_head
self.project_q = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
self.project_k = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
self.project_v = CpmBeeLinear(self.dim_model, self.num_heads * self.dim_head, dtype=config.torch_dtype)
self.attention_out = CpmBeeLinear(self.num_heads * self.dim_head, self.dim_model, dtype=config.torch_dtype)
self.softmax = torch.nn.Softmax(dim=-1)
if config.dropout_p is not None:
self.dropout = torch.nn.Dropout(p=config.dropout_p)
else:
self.dropout = None
def forward(
self,
hidden_q: torch.Tensor,
hidden_kv: torch.Tensor,
attention_mask: torch.BoolTensor,
position_bias: torch.Tensor,
output_attentions: Optional[bool] = False,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_q (`torch.Tensor`):
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)):
Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)`
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Avoid invalid areas to participate in the calculation of self-attention.
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Provide positional information to self-attention block.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*):
Cached past key and value projection states.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
batch_size = hidden_q.size(0)
len_q = hidden_q.size(1)
len_k = hidden_kv.size(1)
query = self.project_q(hidden_q)
key = self.project_k(hidden_kv)
value = self.project_v(hidden_kv)
query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
if past_key_values is not None:
key = torch.cat([past_key_values[0], key], dim=-2)
value = torch.cat([past_key_values[1], value], dim=-2)
len_k = key.size(-2)
# (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k)
score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head)
score = score + position_bias
score = torch.masked_fill(
score,
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype),
)
score = self.softmax(score)
score = torch.masked_fill(
score,
attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
torch.scalar_tensor(0, device=score.device, dtype=score.dtype),
)
if output_attentions:
attn_weights = score
else:
attn_weights = None
if self.dropout is not None:
score = self.dropout(score)
# (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head)
score = torch.matmul(score, value)
score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3)
score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head)
score = self.attention_out(score)
past_key_values = None
if use_cache:
past_key_values = (key, value)
return score, attn_weights, past_key_values
class CpmBeeSelfAttentionBlock(nn.Module):
def __init__(self, config: CpmBeeConfig):
super().__init__()
self.layernorm_before_attention = CpmBeeLayerNorm(config)
self.self_attention = CpmBeeAttention(config)
if config.dropout_p:
self.dropout = torch.nn.Dropout(config.dropout_p)
else:
self.dropout = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_bias: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Avoid invalid areas to participate in the calculation of self-attention.
position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
Provide positional information to self-attention block.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
past_key_values (`Tuple(torch.FloatTensor)`, *optional*):
Cached past key and value projection states.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
outputs = self.layernorm_before_attention(hidden_states)
outputs = self.self_attention(
outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache
)
outputs, attn_weights, current_key_value = outputs
if self.dropout is not None:
outputs = self.dropout(outputs)
hidden_states = (hidden_states + outputs) / 1.05
return hidden_states, attn_weights, current_key_value
class CpmBeeDenseGatedACT(nn.Module):
def __init__(self, config: CpmBeeConfig):
super().__init__()
self.w_0 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype)
self.w_1 = CpmBeeLinear(config.hidden_size, config.dim_ff, dtype=config.torch_dtype)
self.act = torch.nn.GELU()
def forward(self, hidden_states: torch.Tensor):
"""Transform an input tensor from one feature space to another via a nonlinear operation
Args:
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
"""
gate_score = self.act(self.w_0(hidden_states))
hidden_states = self.w_1(hidden_states)
hidden_states = gate_score * hidden_states
return hidden_states
class CpmBeeFeedForward(nn.Module):
def __init__(self, config: CpmBeeConfig):
super().__init__()
self.w_in = CpmBeeDenseGatedACT(config)
if config.dropout_p is not None:
self.dropout = torch.nn.Dropout(config.dropout_p)
else:
self.dropout = None
self.w_out = CpmBeeLinear(config.dim_ff, config.hidden_size, dtype=config.torch_dtype)
def forward(self, hidden_states: torch.Tensor):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
"""
hidden_states = self.w_in(hidden_states)
if self.dropout is not None:
hidden_states = self.dropout(hidden_states)
hidden_states = self.w_out(hidden_states)
return hidden_states
class CpmBeeFFNBlock(nn.Module):
def __init__(self, config: CpmBeeConfig):
super().__init__()
self.layernorm_before_ffn = CpmBeeLayerNorm(config)
self.ffn = CpmBeeFeedForward(config)
if config.dropout_p:
self.dropout = torch.nn.Dropout(config.dropout_p)
else:
self.dropout = None
def forward(
self,
hidden_states: torch.Tensor,
):
"""
Args:
hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
Hidden states before feed forward layer.
"""
ln_outputs = self.layernorm_before_ffn(hidden_states)
outputs = self.ffn(ln_outputs)
if self.dropout is not None:
outputs = self.dropout(outputs)
hidden_states = (hidden_states + outputs) / 1.05
return hidden_states
class CpmBeeTransformerBlock(nn.Module):
def __init__(self, config: CpmBeeConfig, mask_att: bool = False, mask_ffn: bool = False):
super().__init__()
self.mask_att = mask_att
self.mask_ffn = mask_ffn
if not self.mask_att:
self.self_att = CpmBeeSelfAttentionBlock(config)
if not self.mask_ffn:
self.ffn = CpmBeeFFNBlock(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_bias: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_states (`torch.Tensor`):
Input to the layer of shape `(batch, seq_len, dim_model)`
attention_mask (`torch.Tensor`):
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
position_bias (`torch.Tensor`):
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
Cached past key and value projection states
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
if not self.mask_att:
hidden_states = self.self_att(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
output_attentions=output_attentions,
past_key_values=past_key_values,
use_cache=use_cache,
)
hidden_states, attn_weights, current_key_value = hidden_states
else:
attn_weights, current_key_value = None, (None, None)
if not self.mask_ffn:
hidden_states = self.ffn(hidden_states)
return hidden_states, attn_weights, current_key_value
class CpmBeeEncoder(nn.Module):
def __init__(self, config: CpmBeeConfig):
super().__init__()
self.num_layers = config.num_hidden_layers
if config.mask_modules is not None:
assert len(config.mask_modules) == self.num_layers, "The total number of masks should equal to num_layers"
for mask_module in config.mask_modules:
assert len(mask_module) == 2, "For encoder, each mask should be (mask_att, mask_ffn)"
else:
config.mask_modules = [(False, False)] * self.num_layers
self.layers = nn.ModuleList(
[
CpmBeeTransformerBlock(
config, mask_att=config.mask_modules[ith][0], mask_ffn=config.mask_modules[ith][1]
)
for ith in range(self.num_layers)
]
)
self.output_layernorm = CpmBeeLayerNorm(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_bias: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache: Optional[bool] = None,
):
"""
Args:
hidden_states (`torch.Tensor`):
Input to the layer of shape `(batch, seq_len, dim_model)`
attention_mask (`torch.Tensor`):
Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
position_bias (`torch.Tensor`):
Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
Cached past key and value projection states
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
"""
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
current_key_values = () if use_cache else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
position_bias,
output_attentions=output_attentions,
past_key_values=past_key_values[i] if past_key_values else None,
use_cache=use_cache,
)
hidden_states, attn_weights, current_key_value = layer_outputs
if output_attentions:
all_self_attns += (attn_weights,)
if current_key_values is not None:
current_key_values = current_key_values + (current_key_value,)
hidden_states = self.output_layernorm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
return hidden_states, current_key_values, all_hidden_states, all_self_attns
class CpmBeeBucketPositionBias(nn.Module):
def __init__(self, config: CpmBeeConfig) -> None:
super().__init__()
self.num_heads = config.num_attention_heads
self.num_buckets = config.position_bias_num_buckets
self.num_segment_bucket = config.position_bias_num_segment_buckets
self.max_distance = config.position_bias_max_distance
self.relative_attention_bias = nn.Parameter(
torch.empty(
config.position_bias_num_buckets + config.position_bias_num_segment_buckets,
config.num_attention_heads,
dtype=config.torch_dtype,
),
)
def forward(self, query_pos: torch.Tensor, key_pos: torch.Tensor, rel_buckets: torch.Tensor):
with torch.no_grad():
batch = key_pos.size(0)
keylen = key_pos.size(1)
querylen = query_pos.size(1)
if key_pos.size(0) != query_pos.size(0):
raise AssertionError(
f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!"
)
if rel_buckets.size(0) != batch:
raise AssertionError(
f"rel_buckets.size(0) should be equal to batch, but got {rel_buckets.size(0)} and {batch}!"
)
if rel_buckets.size(1) != querylen:
raise AssertionError(
f"rel_buckets.size(1) should be equal to querylen, but got {rel_buckets.size(1)} and {querylen}!"
)
if rel_buckets.size(2) != keylen:
raise AssertionError(
f"rel_buckets.size(2) should be equal to keylen, but got {rel_buckets.size(2)} and {keylen}!"
)
relative_position_bucket = rel_buckets - 1 + self.num_buckets
inner_segment_bucket = self._position_bucket(
key_pos[..., None, :] - query_pos[..., :, None],
num_buckets=self.num_buckets,
max_distance=self.max_distance,
)
relative_position_bucket = torch.where(
rel_buckets == 0,
inner_segment_bucket,
relative_position_bucket,
)
embeds = nn.functional.embedding(relative_position_bucket, self.relative_attention_bias)
embeds = embeds.permute(0, 3, 1, 2).contiguous()
return embeds
def _position_bucket(self, relative_position, num_buckets=32, max_distance=128):
relative_buckets = 0
num_buckets //= 2
relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets
relative_position = torch.abs(relative_position)
max_exact = num_buckets // 2
is_small = relative_position < max_exact
relative_postion_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.int32)
relative_postion_if_large = torch.min(
relative_postion_if_large,
torch.full_like(relative_postion_if_large, num_buckets - 1),
)
relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large)
return relative_buckets
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMBee
class CpmBeeOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class CpmBeeRotaryEmbedding(nn.Module):
"""
RotaryEmbedding embeds the unk token and special token. It will embeds the "...<mask>...<mask>...<unk>...<unk>..."
to "...<mask_0>...<mask_1>...<unk_0>...<unk_1>..."" to help model to specify different special tokens and unk
tokens.
"""
def __init__(self, config: CpmBeeConfig):
super().__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, config.hidden_size, 2, dtype=torch.float32) / config.hidden_size))
self.distance_scale = config.distance_scale
self.dtype = config.torch_dtype
self.inv_freq = inv_freq.to(config.torch_dtype)
def forward(self, x: torch.Tensor, x_pos: torch.Tensor):
inv_freq = self.inv_freq.to(device=x.device, dtype=x.dtype)
x_pos = x_pos * self.distance_scale
freqs = x_pos[..., None] * inv_freq[None, :] # (..., dim/2)
emb = torch.cat((freqs, freqs), dim=-1) # (..., dim)
emb_cos = emb.cos() # (..., dim)
emb_sin = emb.sin() # (..., dim)
rotate_x = torch.cat([-x[..., x.size(-1) // 2 :], x[..., : x.size(-1) // 2]], dim=-1) # (..., dim)
return x * emb_cos + rotate_x * emb_sin
class CpmBeeEmbeddingExt(nn.Embedding):
"""
Contains a RotaryEmbedding.
"""
def __init__(self, config: CpmBeeConfig):
super().__init__(config.vocab_size, config.hidden_size, dtype=config.torch_dtype)
self.dim_model = config.hidden_size
self.rotary_emb = CpmBeeRotaryEmbedding(config)
def forward(self, ids: torch.Tensor, ids_sub: torch.Tensor):
embeds = super().forward(ids) / math.sqrt(self.dim_model)
return self.rotary_emb(embeds, ids_sub)
def projection(self, x: torch.Tensor, ext_table: Optional[torch.Tensor] = None):
logits = nn.functional.linear(x / math.sqrt(self.dim_model), self.weight)
if ext_table is not None:
logits_ext = nn.functional.linear(x, ext_table)
logits = torch.cat([logits, logits_ext], dim=-1)
return logits
class CpmBeePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CpmBeeConfig
base_model_prefix = "cpmbee"
supports_gradient_checkpointing = True
_keys_to_ignore_on_load_missing = [r"position_ids"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
if module.bias is not None:
module.bias.data.zero_()
# still needed
elif isinstance(module, CpmBeeEmbeddingExt):
module.weight.data.normal_(mean=0.0, std=self.config.init_std)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, CpmBeeLayerNorm):
module.weight.data.fill_(1.0)
elif isinstance(module, CpmBeeBucketPositionBias):
module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, CpmBeeEncoder):
module.gradient_checkpointing = value
CPMBEE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters
config ([`~CpmBeeConfig`]): Model configuration class with all the parameters of the
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CPMBEE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
Subscription of input sequence tokens in the vocabulary.
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2, ...
<ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to group
<mask>.
position (`torch.Tensor` of shape `(batch_size, seq_len)`):
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a token
id is context, it does not need to be predicted.
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
Total number of segments in the current input.
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello, ",
"<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
The offset of segment rel.
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
The segment relevance. A relative implementation of measuring the importance of segments.
past_states (`Dict[str, Union[torch.Tensor, List]]`):
Store the history information including position, context, sample_ids, num_segments, segment and
past_key_values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in the
self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) and
other history arguments to speed up sequential decoding.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare CPMBee Model outputting raw hidden-states without any specific head on top.",
CPMBEE_START_DOCSTRING,
)
class CpmBeeModel(CpmBeePreTrainedModel):
def __init__(self, config: CpmBeeConfig):
super().__init__(config)
if config.half:
config.torch_dtype = torch.half
else:
config.torch_dtype = torch.float
self.encoder = CpmBeeEncoder(config)
self.input_embedding = CpmBeeEmbeddingExt(config)
self.position_bias = CpmBeeBucketPositionBias(config)
self.vocab_size = config.vocab_size
self.post_init()
def get_input_embeddings(self):
return self.input_embedding
def set_input_embeddings(self, embeddings, **kwargs):
self.input_embedding = embeddings
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: torch.Tensor,
input_id_sub: Optional[torch.Tensor] = None,
length: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
sample_ids: Optional[torch.Tensor] = None,
num_segments: Optional[torch.Tensor] = None,
segment: Optional[torch.Tensor] = None,
segment_rel_offset: Optional[torch.Tensor] = None,
segment_rel: Optional[torch.Tensor] = None,
span: Optional[Dict] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
past_key_values: Optional[List] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
# dummy setting for common tests
if input_id_sub is None:
dtype, device = input_ids.dtype, input_ids.device
batch, seq_length = input_ids.size()
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device)
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device)
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
input_id_sub = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
segment_rel_offset = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
segment_rel = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
num_segments = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
sample_ids = torch.zeros_like(input_ids)
with torch.no_grad():
batch = input_ids.size(0)
seqlen = input_ids.size(1)
device = input_ids.device
# calc segment bucket
segment_rel_2d = torch.masked_fill(
segment[:, :, None] * num_segments[:, :, None]
+ segment[:, None, :]
+ segment_rel_offset[:, :, None],
~(
(sample_ids[:, :, None] == sample_ids[:, None, :])
& (span[:, None, :] == span[:, :, None])
), # not in the same span or sample
0, # avoid torch.gather overflow
).view(batch, seqlen * seqlen)
segment_bucket = torch.gather(
input=segment_rel,
dim=1,
index=segment_rel_2d.long(),
).view(batch, seqlen, seqlen)
segment_bucket.masked_fill_(
~(
(sample_ids[:, :, None] == sample_ids[:, None, :])
& (span[:, None, :] == span[:, :, None])
), # not in the same span or sample
1, # bucket is used for in-context samples
)
# directional mask
directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(
seqlen, device=device
).view(-1, 1)
# sample mask
sample_mask_2d = (sample_ids[:, :, None] == 0) | (
sample_ids[:, :, None] == sample_ids[:, None, :]
)
# context mask
attention_mask = context[:, None, :] | (
context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen)
)
# span mask
attention_mask = (
attention_mask & sample_mask_2d & (span[:, None, :] == span[:, :, None])
)
# length mask
mask_1d = (
torch.arange(seqlen, device=device)[None, :].repeat(batch, 1) < length[:, None]
)
attention_mask = (
mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask
)
position = torch.arange(seqlen, device=device).expand(batch, seqlen)
hidden_states = self.input_embedding(input_ids, input_id_sub)
position_bias = self.position_bias(position, position, segment_bucket)
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder(
hidden_states,
attention_mask,
position_bias,
output_attentions,
output_hidden_states,
past_key_values=None,
use_cache=False
)
if not return_dict:
return tuple(
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
def inference(
self,
input_ids: torch.Tensor,
input_id_sub: Optional[torch.Tensor] = None,
position: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
sample_ids: Optional[torch.Tensor] = None,
num_segments: Optional[torch.Tensor] = None,
segment: Optional[torch.Tensor] = None,
segment_rel_offset: Optional[torch.Tensor] = None,
segment_rel: Optional[torch.Tensor] = None,
past_states: Optional[Dict] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
past_key_values: Optional[List] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
# dummy setting for common tests
if input_id_sub is None:
dtype, device = input_ids.dtype, input_ids.device
batch, seq_length = input_ids.size()
segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device)
context = torch.full((batch, seq_length), 1, dtype=dtype, device=device)
position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
input_id_sub = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
segment_rel_offset = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
segment_rel = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
num_segments = torch.full((batch, seq_length), 0, dtype=dtype, device=device)
sample_ids = torch.zeros_like(input_ids)
with torch.no_grad():
if past_states is None:
present_position = position
present_context = context
present_sample_ids = sample_ids
present_num_segments = num_segments
present_segments = segment
present_buffer = None
else:
present_position = torch.cat([past_states["buffer_position"], position], dim=-1)
present_context = torch.cat([past_states["buffer_context"], context], dim=-1)
present_sample_ids = torch.cat([past_states["buffer_sample_ids"], sample_ids], dim=-1)
present_num_segments = torch.cat([past_states["buffer_num_segments"], num_segments], dim=-1)
present_segments = torch.cat([past_states["buffer_segments"], segment], dim=-1)
present_buffer = past_states["buffer"]
batch = input_ids.size(0)
len_q = input_ids.size(1)
len_buffer = present_position.size(1)
segment_rel_2d = torch.masked_fill(
segment[:, :, None] * num_segments[:, :, None]
+ present_segments[:, None, :]
+ segment_rel_offset[:, :, None],
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), # not in the same sample
0, # avoid torch.gather overflow
).view(batch, len_q * len_buffer)
segment_bucket = torch.gather(
input=segment_rel,
dim=1,
index=segment_rel_2d.long(),
).view(batch, len_q, len_buffer)
segment_bucket.masked_fill_(
~((sample_ids[:, :, None] == present_sample_ids[:, None, :])), # not in the same span or sample
1, # bucket is used for in-context samples
)
# directional mask
directional_mask_2d = present_position[:, None, :] <= position[:, :, None]
# sample mask
sample_mask_2d = (sample_ids[:, :, None] == 0) | (sample_ids[:, :, None] == present_sample_ids[:, None, :])
# context mask
attention_mask = present_context[:, None, :] | (
context[:, :, None].logical_not() & directional_mask_2d.view(batch, len_q, len_buffer)
)
# span mask
attention_mask = attention_mask & sample_mask_2d
# length mask
mask_1d = present_num_segments != 0
attention_mask = mask_1d.view(batch, 1, len_buffer) & attention_mask
hidden_states = self.input_embedding(input_ids, input_id_sub)
position_bias = self.position_bias(position, present_position, segment_bucket)
hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder(
hidden_states,
attention_mask,
position_bias,
output_attentions,
output_hidden_states,
present_buffer,
use_cache,
)
if not return_dict:
return tuple(
v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class CpmBeeBeamHypotheses(BeamHypotheses):
def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
"""
Override BeamHypotheses for CpmBee. The hyp to add is list but not tensor.
"""
super().__init__(num_beams, length_penalty, early_stopping, max_length)
def add(self, hyp: List, sum_logprobs: float, beam_indices: Optional[torch.LongTensor] = None):
"""
Add a new hypothesis to the list.
"""
score = sum_logprobs / (len(hyp) ** self.length_penalty)
if len(self) < self.num_beams or score > self.worst_score:
self.beams.append((score, hyp, beam_indices))
if len(self) > self.num_beams:
sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
del self.beams[sorted_next_scores[0][1]]
self.worst_score = sorted_next_scores[1][0]
else:
self.worst_score = min(score, self.worst_score)
class CpmBeeBeamSearchScorer(BeamSearchScorer):
"""
Override BeamSearchScorer for CPMBee to support:
1. Replace beam_tokens by beam_states, containing `idx`, `ans`, `nx_token_id`...
2. The `process` will update the beam_states
3. The `finalize` will just return the best hypotheses as a list.
"""
def __init__(
self,
batch_size: int,
num_beams: int,
device: torch.device,
length_penalty: Optional[float] = 1.0,
do_early_stopping: Optional[Union[bool, str]] = False,
num_beam_hyps_to_keep: Optional[int] = 1,
num_beam_groups: Optional[int] = 1,
max_length: Optional[int] = None,
**model_kwargs,
):
self.num_beams = num_beams
self.device = device
self.length_penalty = length_penalty
self.do_early_stopping = do_early_stopping
self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
self.num_beam_groups = num_beam_groups
self.group_size = self.num_beams // self.num_beam_groups
self._is_init = False
self._beam_hyps = [
CpmBeeBeamHypotheses(
num_beams=self.num_beams,
length_penalty=self.length_penalty,
early_stopping=self.do_early_stopping,
max_length=max_length,
)
for _ in range(batch_size)
]
self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device)
self.beam_states = []
for sent_id in range(batch_size):
instance_beam_states = []
for _ in range(self.num_beams):
instance_beam_states.append(
{
"idx": 0,
"ans": [],
"nx_token_id": 6,
"nx_token_sub": 0,
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][0][0],
"nx_position": 0,
}
)
self.beam_states.append(instance_beam_states)
def process(
self,
batch_size: int,
cur_len: int,
_next_scores: torch.FloatTensor,
next_scores: torch.FloatTensor,
next_tokens: torch.LongTensor,
vocab_size: Optional[int] = None,
pad_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
max_length: Optional[int] = None,
ext_table_sub_cpu: Optional[torch.Tensor] = None,
ext_table_ids_cpu: Optional[torch.Tensor] = None,
**model_kwargs,
) -> Tuple[torch.Tensor]:
next_beam_state = []
for sent_id in range(batch_size):
self._done[sent_id] = self._done[sent_id] or self._beam_hyps[sent_id].is_done(
next_scores[sent_id].max().item(), cur_len
)
if self._done[sent_id]:
next_beam_state.append(
[
(
{
"idx": 0,
"ans": [],
"nx_token_id": pad_token_id,
"nx_token_sub": 0,
"nx_segment_id": 0,
"nx_position": 0,
},
0,
0,
)
]
* self.num_beams
)
continue
next_instance_beam_states = []
for idx, value in zip(next_tokens[sent_id], next_scores[sent_id]):
beam_id = torch.div(idx, _next_scores.size(-1), rounding_mode="floor").item()
word_id = (idx % _next_scores.size(-1)).item()
curr_info = self.beam_states[sent_id][beam_id]
if (
word_id == eos_token_id
and (curr_info["idx"] + 1 == len(model_kwargs["other_info"][sent_id]["predict_segments"]))
) or cur_len == max_length:
self._beam_hyps[sent_id].add(
self.beam_states[sent_id][beam_id]["ans"]
+ [
(
word_id,
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
)
],
value.item(),
)
elif word_id == eos_token_id:
next_instance_beam_states.append(
(
{
"idx": curr_info["idx"] + 1,
"ans": curr_info["ans"]
+ [
(
word_id,
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
)
],
"nx_token_id": bos_token_id,
"nx_token_sub": 0,
"nx_segment_id": model_kwargs["other_info"][sent_id]["predict_segments"][
curr_info["idx"] + 1
][0],
"nx_position": 0,
},
value.item(),
sent_id * self.num_beams + beam_id,
)
)
else:
raw_word_id = word_id
word_id_sub = 0
if word_id >= vocab_size:
word_id -= vocab_size
word_id_sub = int(ext_table_sub_cpu[word_id].item())
word_id = int(ext_table_ids_cpu[word_id].item())
next_instance_beam_states.append(
(
{
"idx": curr_info["idx"],
"ans": curr_info["ans"]
+ [
(
raw_word_id,
model_kwargs["other_info"][sent_id]["predict_segments"][curr_info["idx"]][1],
)
],
"nx_token_id": word_id,
"nx_token_sub": word_id_sub,
"nx_segment_id": curr_info["nx_segment_id"],
"nx_position": curr_info["nx_position"] + 1,
},
value.item(),
sent_id * self.num_beams + beam_id,
)
)
if len(next_instance_beam_states) == self.num_beams:
break
assert len(next_instance_beam_states) == 0 if cur_len == max_length else self.num_beams
next_beam_state.append(next_instance_beam_states)
if cur_len == max_length:
return None
beam_reorder_idx = []
beam_new_scores = []
beam_states = []
for sent_id in range(batch_size):
instance_beam_states = []
for beam_id in range(self.num_beams):
state, value, beam_idx = next_beam_state[sent_id][beam_id]
beam_reorder_idx.append(beam_idx)
beam_new_scores.append(value)
instance_beam_states.append(state)
beam_states.append(instance_beam_states)
self.beam_states = beam_states
return UserDict(
{
"next_beam_scores": torch.tensor(beam_new_scores, device=self.device).view(-1),
"next_beam_states": beam_states,
"next_beam_indices": torch.tensor(beam_reorder_idx, dtype=torch.int32, device=self.device).view(-1),
}
)
def finalize(self) -> Tuple[torch.LongTensor]:
results = []
for _, hypotheses in enumerate(self._beam_hyps):
best_hyp = max(hypotheses.beams, key=lambda x: x[0])[1]
results.append(best_hyp)
return results
@staticmethod
def apply_repetition_penalty(
logits,
batch_size,
num_beams,
prev_output_tokens,
repetition_penalty,
start_idx=None,
end_idx=None,
window_size=None,
):
# only conduct repetition penalty for the output
assert repetition_penalty >= 1, "repetition penalty coefficient should >= 1"
# repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858)
for i in range(batch_size * num_beams):
if start_idx is None or end_idx is None:
output_tokens = prev_output_tokens[i].tolist()
else:
if end_idx >= start_idx:
if window_size:
output_tokens = prev_output_tokens[i][
max(start_idx, end_idx + 1 - window_size) : end_idx + 1
].tolist()
else:
output_tokens = prev_output_tokens[i][start_idx : end_idx + 1].tolist()
else:
output_tokens = []
for previous_token in set(output_tokens):
# if score < 0 then repetition penalty has to
# multiplied to reduce the previous token probability
if logits[i, previous_token] < 0:
logits[i, previous_token] *= repetition_penalty
else:
logits[i, previous_token] /= repetition_penalty
@add_start_docstrings(
"""
The CPMBee Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
""",
CPMBEE_START_DOCSTRING,
)
class CpmBeeForCausalLM(CpmBeePreTrainedModel):
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
def __init__(self, config: CpmBeeConfig):
super().__init__(config)
self.cpmbee = CpmBeeModel(config)
# lm_head.weight is tied to cpmbee.input_embedding.weight
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
@add_start_docstrings_to_model_forward(CPMBEE_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
input_id_sub: Optional[torch.Tensor] = None,
length: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
sample_ids: Optional[torch.Tensor] = None,
num_segments: Optional[torch.Tensor] = None,
segment: Optional[torch.Tensor] = None,
segment_rel_offset: Optional[torch.Tensor] = None,
segment_rel: Optional[torch.Tensor] = None,
span: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
past_key_values: Optional[List] = None,
use_cache: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
ext_table_ids: Optional[torch.Tensor] = None, # (ext_table_size) int32
ext_table_sub: Optional[torch.Tensor] = None, # (ext_table_size) int32
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
Subscription of input sequence tokens in the vocabulary.
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2,
... <ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to
group <mask>.
length (`torch.Tensor` of shape `(batch_size)`):
The length of sequences in batch.
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a
token id is context, it does not need to be predicted.
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
Total number of segments in the current input.
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello,
", "<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
The offset of segment rel.
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
The segment relevance. A relative implementation of measuring the importance of segments.
span (`Dict[str, Union[torch.Tensor, List]]`):
Span will record every input_ids shape.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in
the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values`
input) and other history arguments to speed up sequential decoding.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
ext_table_ids (`torch.Tensor`, *optional*):
ext_table ids for embedding projection.
ext_table_sub (`torch.Tensor`, *optional*):
ext_table subscriptions for embedding projection.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
model_output = self.cpmbee(
input_ids,
input_id_sub,
length,
context,
sample_ids,
num_segments,
segment,
segment_rel_offset,
segment_rel,
span,
output_attentions,
output_hidden_states,
past_key_values,
use_cache,
return_dict,
)
hidden_states = model_output.last_hidden_state if return_dict else model_output[0]
if ext_table_ids is not None:
ext_table = self.cpmbee.input_embedding(ext_table_ids, ext_table_sub)
else:
ext_table = None
logits = self.cpmbee.input_embedding.projection(hidden_states, ext_table)
loss = None
if labels is not None:
loss_func = nn.CrossEntropyLoss()
loss = loss_func(logits.view(-1, logits.size(-1)), labels.long().view(-1))
if not return_dict:
output = (logits,) + model_output[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=model_output.past_key_values,
hidden_states=model_output.hidden_states,
attentions=model_output.attentions,
)
def inference(
self,
input_ids: Optional[torch.Tensor] = None,
input_id_sub: Optional[torch.Tensor] = None,
position: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
sample_ids: Optional[torch.Tensor] = None,
num_segments: Optional[torch.Tensor] = None,
segment: Optional[torch.Tensor] = None,
segment_rel_offset: Optional[torch.Tensor] = None,
segment_rel: Optional[torch.Tensor] = None,
past_states: Optional[Dict] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
past_key_values: Optional[List] = None,
use_cache: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
ext_table_ids: Optional[torch.Tensor] = None, # (ext_table_size) int32
ext_table_sub: Optional[torch.Tensor] = None, # (ext_table_size) int32
**kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`CPMBeeTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_id_sub (`torch.Tensor` of shape `(batch_size, seq_len)`):
Subscription of input sequence tokens in the vocabulary.
Subscription of normal text will be zero while the special tokens of each group will be the 0, 1, 2,
... <ans_0>, <ans_1>, <ans_2> ... belongs to group <ans>. <mask_0>, <mask_1>, <mask_2> ... belongs to
group <mask>.
position (`torch.Tensor` of shape `(batch_size, seq_len)`):
The position of input sequence tokens in the vocabulary for each segment. if segment1 is 0, 1, 2 and
segment2 is 0, 1, 2, 3, the position will be 0, 1, 2, 0, 1, 2, 3
context (`torch.Tensor` of shape `(batch_size, seq_len)`):
Whether this token id is context or not. If is context, the value is 1. If not, the value is 0. If a
token id is context, it does not need to be predicted.
sample_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
Give a sample id to every token id. The token ids with same sample ids belongs to the same sample.
num_segments (`torch.Tensor` of shape `(batch_size, seq_len)`):
Total number of segments in the current input.
segment (`torch.Tensor` of shape `(batch_size, seq_len)`):
Give a segment id to every token id. The token ids with same segment ids belongs to the same sample.
Generally, a string key or value in input data will be a segment. For example, input {"input": "hello,
", "<ans>": ""}, the segments includes: "input", "hello, ", "<ans>" and "".
segment_rel_offset (`torch.Tensor` of shape `(batch_size, seq_len)`):
The offset of segment rel.
segment_rel (`torch.Tensor` of shape `(batch_size, seq_len)`):
The segment relevance. A relative implementation of measuring the importance of segments.
past_states (`Dict[str, Union[torch.Tensor, List]]`):
Store the history information including position, context, sample_ids, num_segments, segment and
past_key_values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A dummy arguments for CPMBee. The `past_states` contains pre-computed hidden-states (key and values in
the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values`
input) and other history arguments to speed up sequential decoding.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
ext_table_ids (`torch.Tensor`, *optional*):
ext_table ids for embedding projection.
ext_table_sub (`torch.Tensor`, *optional*):
ext_table subscriptions for embedding projection.
Example:
Text Generation with CpmBeeForCausalLM.
```python
>>> from transformers import CpmBeeTokenizer, CpmBeeForCausalLM
>>> texts = {"input": "今天天气不错,", "<ans>": ""}
>>> model = CpmBeeForCausalLM.from_pretrained("openbmb/cpm-bee-10b")
>>> tokenizer = CPMBeeTokenizer.from_pretrained("openbmb/cpm-bee-10b")
>>> output_texts = model.generate({"input": "今天天气不错,", "<ans>": ""}, tokenizer)
>>> print(output_texts)
{'input': '今天天气不错,', '<ans>': '适合睡觉。'}
```
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
model_output = self.cpmbee.inference(
input_ids,
input_id_sub,
position,
context,
sample_ids,
num_segments,
segment,
segment_rel_offset,
segment_rel,
past_states,
output_attentions,
output_hidden_states,
past_key_values,
use_cache,
return_dict,
)
hidden_states = model_output.last_hidden_state if return_dict else model_output[0]
if ext_table_ids is not None:
ext_table = self.cpmbee.input_embedding(ext_table_ids, ext_table_sub)
else:
ext_table = None
logits = self.cpmbee.input_embedding.projection(hidden_states, ext_table)
loss = None
if labels is not None:
loss_func = nn.CrossEntropyLoss()
loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1))
if not return_dict:
output = (logits,) + model_output[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=model_output.past_key_values,
hidden_states=model_output.hidden_states,
attentions=model_output.attentions,
)
def get_input_embeddings(self):
return self.cpmbee.input_embedding
def set_input_embeddings(self, embeddings):
self.cpmbee.input_embedding = embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
batch_size: int,
beam_scorer: CpmBeeBeamSearchScorer = None,
input_id_subs: Optional[torch.Tensor] = None,
input_pos: Optional[torch.Tensor] = None,
segment_ids: Optional[torch.Tensor] = None,
batch_ext_table_ids: Optional[torch.Tensor] = None,
batch_ext_table_sub: Optional[torch.Tensor] = None,
other_info: Optional[Dict] = None,
**model_kwargs,
):
"""
Choose the current input according to beam states.
"""
# init preparation
context = model_kwargs.get("context")
sample_ids = model_kwargs.get("sample_ids")
segment_rel_offset = model_kwargs.get("segment_rel_offset")
num_segments = model_kwargs.get("num_segments")
segment_rel = model_kwargs.get("segment_rel")
past_states = model_kwargs.get("past_states", None)
past_key_values = model_kwargs.get("past_key_values", None)
_input_ids = input_ids
# update input in generation
if beam_scorer is not None:
tmp_input = []
tmp_input_sub = []
tmp_position = []
tmp_segment = []
for sent_id in range(batch_size):
for beam_id in range(beam_scorer.num_beams):
tmp_input.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_id"])
tmp_input_sub.append(beam_scorer.beam_states[sent_id][beam_id]["nx_token_sub"])
tmp_position.append(beam_scorer.beam_states[sent_id][beam_id]["nx_position"])
tmp_segment.append(beam_scorer.beam_states[sent_id][beam_id]["nx_segment_id"])
model_kwargs["input_id_subs"] = input_id_subs = torch.tensor(
tmp_input_sub, dtype=torch.int32, device=self.device
).view(batch_size * beam_scorer.num_beams, 1)
model_kwargs["input_pos"] = input_pos = torch.tensor(
tmp_position, dtype=torch.int32, device=self.device
).view(batch_size * beam_scorer.num_beams, 1)
model_kwargs["segment_ids"] = segment_ids = torch.tensor(
tmp_segment, dtype=torch.int32, device=self.device
).view(batch_size * beam_scorer.num_beams, 1)
input_ids = torch.cat(
[
input_ids,
torch.tensor(tmp_input, dtype=torch.int32, device=self.device).view(
batch_size * beam_scorer.num_beams, 1
),
],
dim=-1,
)
_input_ids = input_ids[:, -1:]
return {
"input_ids": _input_ids,
"input_id_sub": input_id_subs,
"position": input_pos,
"context": context,
"sample_ids": sample_ids,
"segment_rel_offset": segment_rel_offset,
"segment": segment_ids,
"num_segments": num_segments,
"segment_rel": segment_rel,
"use_cache": True,
"past_key_values": past_key_values,
"ext_table_ids": batch_ext_table_ids,
"ext_table_sub": batch_ext_table_sub,
"past_states": past_states,
}, input_ids
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_inputs=None,
**model_kwargs,
) -> Dict[str, Any]:
"""
Concatenate the history input and current input.
"""
old_past_states = model_kwargs["past_states"]
model_kwargs["past_states"] = {
"buffer_position": torch.cat([old_past_states["buffer_position"], model_inputs["position"]], dim=-1),
"buffer_context": torch.cat([old_past_states["buffer_context"], model_inputs["context"]], dim=-1),
"buffer_sample_ids": torch.cat([old_past_states["buffer_sample_ids"], model_inputs["sample_ids"]], dim=-1),
"buffer_num_segments": torch.cat(
[old_past_states["buffer_num_segments"], model_inputs["num_segments"]], dim=-1
),
"buffer_segments": torch.cat([old_past_states["buffer_segments"], model_inputs["segment"]], dim=-1),
"buffer": outputs.past_key_values,
}
return model_kwargs
def _reorder_cache(self, past_key_values: Dict, beam_idx: torch.Tensor):
beam_idx = beam_idx.tolist()
for kw in past_key_values.keys():
if kw == "buffer":
buf_list = past_key_values[kw]
nw_buf_list = []
for buf in buf_list:
if buf == (None, None):
nw_buf_list.append((None, None))
else:
k_buf, v_buf = buf
nw_buf_list.append((k_buf[beam_idx, :], v_buf[beam_idx, :]))
past_key_values[kw] = nw_buf_list
else:
past_key_values[kw] = past_key_values[kw][beam_idx, :]
return past_key_values
@staticmethod
def _expand_inputs_for_generation(
expand_size: int = 1,
is_encoder_decoder: bool = False,
input_ids: Optional[torch.LongTensor] = None,
**model_kwargs,
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
# do not expand ext_table_ids and ext_table_sub
def _expand_dict_for_generation(dict_to_expand):
for key in dict_to_expand:
if (
dict_to_expand[key] is not None
and isinstance(dict_to_expand[key], torch.Tensor)
and "ext_table" not in key
):
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
return dict_to_expand
if input_ids is not None:
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
model_kwargs = _expand_dict_for_generation(model_kwargs)
if is_encoder_decoder:
if model_kwargs.get("encoder_outputs") is None:
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
return input_ids, model_kwargs
def adjust_logits_during_generation(
self,
logits: torch.FloatTensor,
batch_size: int,
beam_size: int,
vocab_size: int,
ext_table_ids: torch.Tensor,
**model_kwargs,
) -> torch.FloatTensor:
"""
Implement in subclasses of [`PreTrainedModel`] for custom behavior to adjust the logits in the generate method.
"""
for sent_id in range(batch_size):
if 1 not in model_kwargs["other_info"][sent_id]["ext_table"]:
# unk is not allowed, mask unk
logits[sent_id * beam_size : (sent_id + 1) * beam_size, 1] = -10000
ext_ids = set()
for v in model_kwargs["other_info"][sent_id]["ext_table"].keys():
ext_ids.add(v)
for ext_id in range(vocab_size, vocab_size + ext_table_ids.size(0)):
if ext_id not in ext_ids:
logits[sent_id * beam_size : (sent_id + 1) * beam_size, ext_id] = -10000
return logits
def beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: CpmBeeBeamSearchScorer,
repetition_penalty: Optional[float] = 1.0,
logits_processor: Optional[LogitsProcessorList] = None,
max_length: Optional[int] = None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[Union[int, List[int]]] = None,
bos_token_id: Optional[Union[int, List[int]]] = None,
vocab_size: Optional[int] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None,
return_dict_in_generate: Optional[bool] = None,
synced_gpus: bool = False,
**model_kwargs,
) -> List:
"""
Override the beam_search for CPMBee.
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id
vocab_size = vocab_size if vocab_size is not None else self.generation_config.vocab_size
max_length = max_length if max_length is not None else self.generation_config.max_new_tokens
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
output_attentions = (
output_attentions if output_attentions is not None else self.generation_config.output_attentions
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate
if return_dict_in_generate is not None
else self.generation_config.return_dict_in_generate
)
batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
if num_beams * batch_size != batch_beam_size:
raise ValueError(
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
beam_indices = (
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
)
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=self.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False # used by synced_gpus only
# init inference
model_inputs, input_ids = self.prepare_inputs_for_generation(input_ids, batch_size, **model_kwargs)
pred_start_index = input_ids.size(-1)
outputs = self.inference(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# update model_kwargs
model_kwargs["past_states"] = {
"buffer_position": model_inputs["position"],
"buffer_context": model_inputs["context"],
"buffer_sample_ids": model_inputs["sample_ids"],
"buffer_num_segments": model_inputs["num_segments"],
"buffer_segments": model_inputs["segment"],
"buffer": outputs.past_key_values,
}
model_kwargs["context"] = torch.ones(batch_beam_size, dtype=torch.bool, device=self.device).view(
batch_beam_size, 1
)
model_kwargs["sample_ids"] = torch.zeros(batch_beam_size, dtype=torch.int32, device=self.device).view(
batch_beam_size, 1
)
model_kwargs["num_segments"] = model_kwargs["num_segments"][:, -1:]
model_kwargs["segment_rel_offset"] = model_kwargs["segment_rel_offset"][:, -1:]
model_kwargs["past_key_values"] = outputs.past_key_values
ext_table_ids_cpu = model_inputs["ext_table_ids"].cpu()
ext_table_sub_cpu = model_inputs["ext_table_sub"].cpu()
cur_len = 0
while True:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
break
model_inputs, input_ids = self.prepare_inputs_for_generation(
input_ids, batch_size, beam_scorer, **model_kwargs
)
outputs = self.inference(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
next_token_logits = outputs.logits[:, -1, :]
if all(beam_scorer._done):
break
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
next_token_logits = self.adjust_logits_during_generation(
next_token_logits, batch_size, num_beams, vocab_size, ext_table_ids_cpu, **model_kwargs
)
# repetition_penalty
beam_scorer.apply_repetition_penalty(
next_token_logits,
batch_size,
num_beams,
input_ids,
repetition_penalty,
pred_start_index,
input_ids.size(-1) - 1,
None,
)
_next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * num_beams, vocab_size)
next_token_scores_processed = logits_processor(input_ids, _next_token_scores)
# next_token_scores_processed = _next_token_scores
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(_next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores_processed,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# reshape for beam search
next_token_scores = next_token_scores.view(batch_size, -1)
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
next_token_scores, next_tokens = torch.topk(
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
)
beam_outputs = beam_scorer.process(
batch_size,
cur_len,
_next_token_scores,
next_token_scores,
next_tokens,
vocab_size=vocab_size,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
max_length=max_length,
ext_table_ids_cpu=ext_table_ids_cpu,
ext_table_sub_cpu=ext_table_sub_cpu,
**model_kwargs,
)
if beam_outputs is None:
break
beam_idx = beam_outputs["next_beam_indices"]
beam_scores = beam_outputs["next_beam_scores"]
input_ids = input_ids[beam_idx.tolist(), :]
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_inputs, **model_kwargs)
if model_kwargs["past_states"] is not None:
model_kwargs["past_states"] = self._reorder_cache(model_kwargs["past_states"], beam_idx)
if return_dict_in_generate and output_scores:
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
cur_len += 1
if beam_scorer.is_done or cur_len == max_length + 1:
if not synced_gpus:
break
else:
this_peer_finished = True
sequence_outputs = beam_scorer.finalize()
return sequence_outputs
def _generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
repetition_penalty: Optional[float] = 1.0,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = None,
streamer: Optional["BaseStreamer"] = None,
**kwargs,
) -> List:
r"""
The generation of CPMBee.
1. It will use beam search as generation strategy.
2. It will use CpmBeeBeamSearchScorer as the beamsearch scorer.
"""
if synced_gpus is None:
if is_deepspeed_zero3_enabled() and dist.get_world_size() > 1:
synced_gpus = True
else:
synced_gpus = False
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
if generation_config is None:
# legacy: users may modify the model configuration to control generation -- update the generation config
# model attribute accordingly, if it was created from the model config
if self.generation_config._from_model_config:
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config:
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
" deprecated strategy to control generation and will be removed soon, in a future version."
" Please use a generation configuration file (see"
" https://huggingface.co/docs/transformers/main_classes/text_generation)"
)
self.generation_config = new_generation_config
generation_config = self.generation_config
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs
generation_config.validate()
self._validate_model_kwargs(model_kwargs.copy())
# 2. Set generation parameters if not already defined
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
if generation_config.pad_token_id is None and generation_config.eos_token_id is not None:
if model_kwargs.get("attention_mask", None) is None:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
eos_token_id = generation_config.eos_token_id
if isinstance(eos_token_id, list):
eos_token_id = eos_token_id[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.")
generation_config.pad_token_id = eos_token_id
# 3. Define model inputs
# inputs_tensor has to be defined
# model_input_name is defined if model-specific keyword input is passed
# otherwise model_input_name is None
# all model-specific keyword inputs are removed from `model_kwargs`
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
# 4. Define other model kwargs
model_kwargs["output_attentions"] = generation_config.output_attentions
model_kwargs["output_hidden_states"] = generation_config.output_hidden_states
model_kwargs["use_cache"] = generation_config.use_cache
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
requires_attention_mask = "encoder_outputs" not in model_kwargs
if model_kwargs.get("attention_mask", None) is None and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id
)
# decoder-only models should use left-padding for generation
if not self.config.is_encoder_decoder:
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
if (
generation_config.pad_token_id is not None
and len(inputs_tensor.shape) == 2
and torch.sum(inputs_tensor[:, -1] == generation_config.pad_token_id) > 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
if streamer is not None:
streamer.put(input_ids.cpu())
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_seq_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
if has_default_max_length and generation_config.max_new_tokens is None:
warnings.warn(
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
" recommend using `max_new_tokens` to control the maximum length of the generation.",
UserWarning,
)
elif generation_config.max_new_tokens is not None:
if not has_default_max_length:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
raise ValueError(
f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than"
f" the maximum length ({generation_config.max_length})"
)
if input_ids_seq_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
logger.warning(
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_new_tokens`."
)
if streamer is not None and (generation_config.num_beams > 1):
raise ValueError(
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
)
if self.device.type != input_ids.device.type:
warnings.warn(
"You are calling .generate() with the `input_ids` being on a device type different"
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
" Please make sure that you have put `input_ids` to the"
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
" running `.generate()`.",
UserWarning,
)
# 7. prepare distribution pre_processing samplers
logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_seq_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
)
# 8. prepare beam search scorer
beam_scorer = CpmBeeBeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_new_tokens,
**kwargs,
)
# 9. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 10. run beam search
return self.beam_search(
input_ids,
beam_scorer,
repetition_penalty=repetition_penalty,
logits_processor=logits_processor,
max_length=generation_config.max_new_tokens,
pad_token_id=generation_config.pad_token_id,
eos_token_id=generation_config.eos_token_id,
vocab_size=kwargs.get("vocab_size", None),
output_scores=generation_config.output_scores,
return_dict_in_generate=generation_config.return_dict_in_generate,
synced_gpus=synced_gpus,
**model_kwargs,
)
@torch.no_grad()
def generate(
self,
data_list: Union[Dict, List[Dict]],
tokenizer: CpmBeeTokenizer,
**kwargs,
):
"""
Override the generate for CPMBee. It will accept dict or list(dict) as input and returns dict or list(dict)
with `<ans>` filled.
Parameters:
data_list (`dict` or `list(dict)`):
The sequence used as a prompt for the generation or as model inputs to the encoder. If dict, data_list
will be wrapped as a list.
tokenizer: (`CpmBeeTokenizer`):
The tokenizer.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
"""
if isinstance(data_list, dict):
data_list = [data_list]
input_encoded = tokenizer(data_list, return_tensors="pt", padding=True, device=self.device)
input_encoded.update(kwargs)
input_encoded["vocab_size"] = tokenizer.vocab_size
decode_res = self._generate(**input_encoded)
for sent_id, result in enumerate(decode_res):
ans_result_map: Dict[int, List[int]] = {}
for raw_word_id, ans_id in result:
if ans_id not in ans_result_map:
ans_result_map[ans_id] = []
ans_result_map[ans_id].append(raw_word_id)
answer_placeholders = input_encoded["other_info"][sent_id]["answer_placeholders"]
ext_table = input_encoded["other_info"][sent_id]["ext_table"]
data = data_list[sent_id]
for ans_id, token_ids in ans_result_map.items():
if token_ids[-1] == tokenizer.eos_token_id:
token_ids = token_ids[:-1]
text = tokenizer.decode(token_ids, ext_table)
path = answer_placeholders[ans_id - 1]
if len(path) > 0:
p = data["<ans>"]
for part in path[:-1]:
p = p[part]
p[path[-1]] = text
else:
data["<ans>"] = text
for ans_id in range(len(answer_placeholders)):
if (ans_id + 1) not in ans_result_map:
path = answer_placeholders[ans_id]
p = data["<ans>"]
for part in path[:-1]:
p = p[part]
p[path[-1]] = None
return data_list
|