File size: 8,217 Bytes
4ed02d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import argparse
import json
import re
import os
import unicodedata
from typing import Tuple, List
from multiprocessing import Pool
import fasttext
import pandas as pd
from tqdm import tqdm
from transformers import LlamaTokenizerFast
language_model_map = {
"en": "classifiers/ultra_fineweb_en.bin",
"zh": "classifiers/ultra_fineweb_zh.bin"
}
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--language", type=str, required=True, help="Inference language, support: en, zh.")
parser.add_argument("--data-path", type=str, required=True, help="Data path.")
parser.add_argument("--save-path", type=str, required=True, help="Save path root.")
parser.add_argument("--content-key", type=str, required=True, help="Content key for inference.")
parser.add_argument("--tokenizer-path", type=str, default="local_tokenizer", help="Tokenizer path.")
parser.add_argument("--processes-num", type=int, default=64, help="Number of processes.")
parser.add_argument("--write-batch-size", type=int, default=100, help="Write batch size.")
parser.add_argument("--inplace", action="store_true", help="Inplace already processed data.")
return parser.parse_args()
def fasttext_preprocess_func(content: str, tokenizer: LlamaTokenizerFast) -> str:
"""Fasttext preprocess function.
Args:
content (str): Content to process.
Returns:
str: Processed normalized content.
"""
# 1. remove multiple newlines
content = re.sub(r'\n{3,}', '\n\n', content)
# 2. lower the content
content = content.lower()
# 3. remove diacritics
content = ''.join(
c for c in unicodedata.normalize('NFKD', content)
if unicodedata.category(c) != 'Mn')
# 4. word segmentation
token_ids = tokenizer.encode(content, add_special_tokens=False)
single_text_list = []
for token_id in token_ids:
curr_text = tokenizer.decode([token_id])
single_text_list.append(curr_text)
content = ' '.join(single_text_list)
# 5. keep escape chars, \n, \t, \r -> \\n, \\t, \\r,
# which will saved as \n, \t, \r in txt file.
content = re.sub(r'\n', '\\\\n', content)
content = re.sub(r'\r', '\\\\r', content)
content = re.sub(r'\t', '\\\\t', content)
content = re.sub(r' +', ' ', content)
content = content.strip()
return content
def fasttext_infer(norm_content: str, fasttext_model: fasttext.FastText) -> Tuple[str, float]:
"""Fasttext inference function
Args:
content (str): input text
Returns:
str: json string with pred_label and pred_score
"""
pred_label, pred_prob = fasttext_model.predict(norm_content)
pred_label = pred_label[0]
_score = min(pred_prob.tolist()[0], 1)
if pred_label == "__label__neg":
_score = 1 - _score
return pred_label, _score
def load_data(file_path: str, content_key: str) -> List[str]:
"""Load data from file path.
Args:
file_path (str): File path.
content_key (str): Content key.
Returns:
List[str]: List of content.
"""
samples = []
if file_path.endswith(".jsonl") or file_path.endswith(".json"):
with open(file_path, "r", encoding="utf-8") as f:
for line in f:
data = json.loads(line.strip())
if content_key in data:
if data[content_key] == "":
print("Empty text, continue")
continue
if data[content_key] is None:
print("None text, continue")
continue
samples.append(data[content_key])
elif file_path.endswith(".parquet"):
df = pd.read_parquet(file_path)
for _, row in df.iterrows():
if content_key in row:
if row[content_key] == "":
print("Empty text, continue")
continue
if row[content_key] is None:
print("None text, continue")
continue
samples.append(row[content_key])
else:
raise ValueError(f"Unsupported file type: {file_path}")
return samples
def process_file(
file_path: str,
tokenizer_path: str,
fasttext_model_path: str,
save_path: str,
item: int,
content_key: str,
inplace: bool,
write_batch_size: int) -> None:
"""Process a single file.
Args:
file_path (str): File path to process.
tokenizer_path (str): Tokenizer path.
fasttext_model_path (str): Fasttext model path.
save_path (str): Save path.
item (int): Current process item index.
content_key (str): Content key.
write_batch_size (int): Write batch size.
"""
# load tokenizer and fasttext model
tokenizer = LlamaTokenizerFast.from_pretrained(tokenizer_path)
fasttext_model = fasttext.load_model(fasttext_model_path)
# load data
all_texts = load_data(file_path, content_key)
# get file name
file_name = os.path.basename(file_path)
curr_file_name = ".".join(file_name.split(".")[:-1])
output_file = f"{curr_file_name}_fasttext_pos.jsonl"
output_file = os.path.join(save_path, output_file)
if inplace and os.path.exists(output_file):
print(f"File {output_file} already exists, skip")
return
if os.path.exists(output_file):
# remove the file
print(f"File {output_file} already exists, remove it")
os.remove(output_file)
results = []
print(f"ID: {item}, Begin to process {file_path}, total {len(all_texts)} samples, results will be saved in {output_file}")
for text in tqdm(all_texts):
norm_content = fasttext_preprocess_func(text, tokenizer)
label, score = fasttext_infer(norm_content, fasttext_model)
# label is __label__pos or __label__neg
if label == "__label__pos":
curr_result = {"content": text, "pred_label": label, "pred_score": score}
results.append(curr_result)
if len(results) >= write_batch_size:
with open(output_file, "a", encoding="utf-8") as f:
f.write("\n".join(json.dumps(r, ensure_ascii=False) for r in results) + "\n")
results.clear()
# process remaining results
if results:
with open(output_file, "a", encoding="utf-8") as f:
f.write("\n".join(json.dumps(r, ensure_ascii=False) for r in results) + "\n")
def main():
args = parse_args()
language = args.language
data_path = args.data_path
save_path = args.save_path
content_key = args.content_key
tokenizer_path = args.tokenizer_path
processes_num = args.processes_num
write_batch_size = args.write_batch_size
inplace = args.inplace
assert os.path.exists(data_path), f"Data path {data_path} not exists"
assert os.path.exists(tokenizer_path), f"Tokenizer path {tokenizer_path} not exists"
assert language in language_model_map, f"Language {language} not supported"
fasttext_model_path = language_model_map[language]
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
data_path_list = os.listdir(data_path)
data_path_list = [os.path.join(data_path, file_name) for file_name in data_path_list]
print("=" * 100)
print(f"Begin processing\n"
f"- data path: {data_path}\n"
f"- save path: {save_path}\n"
f"- content key: {content_key}\n"
f"- tokenizer path: {tokenizer_path}\n"
f"- processes num: {processes_num}\n"
f"- write batch size: {write_batch_size}\n"
f"- inplace: {inplace}")
print("=" * 100)
print(f"Total {len(data_path_list)} files to process")
# process data
with Pool(processes=processes_num) as pool:
pool.starmap(process_file, [(
file_path, tokenizer_path, fasttext_model_path, save_path, item, content_key, inplace, write_batch_size)
for item, file_path in enumerate(data_path_list)])
print("Finished processing all files")
if __name__ == "__main__":
main() |