File size: 3,127 Bytes
6f9efaf 0e6260c 6f9efaf 28ffeb7 6f9efaf 28ffeb7 6f9efaf e0c7f4a 0e6260c e0c7f4a 6f9efaf 23d9724 dc43a94 23d9724 6f9efaf fe64c14 0e6260c e0c7f4a 0e6260c 34adf95 0e6260c d39cc4e 2235170 0e6260c 6f9efaf 0e6260c 23d9724 8b5c19b a006514 8b5c19b a006514 8b5c19b a006514 8b5c19b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
datasets:
- openbmb/RLAIF-V-Dataset
language:
- en
paper:
---
# Model Card for RLAIF-V
[GitHub ](https://github.com/RLHF-V/RLAIF-V) | [Paper](https://arxiv.org/abs/2405.17220)
**RLAIF-V-12B** is a multimodal large language model (MLLM) that exhibits **super GPT-4V trustworthiness**. The model is built up on OmniLMM from the [MiniCPM-V](https://github.com/OpenBMB/MiniCPM-V) series.
We utilize a novel framework, [RLAIF-V](https://github.com/RLHF-V/RLAIF-V), which **aligns MLLMs in a fully open-source paradigm**. This framework maximally exploits the [open-source feedback](https://huggingface.co/datasets/HaoyeZhang/RLAIF-V-Dataset) from two key perspectives, including **high-quality feedback data** and an **online feedback learning algorithm**.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/T4hALrgNdXKHnkvb-27bA.png" alt="fig1" width="85%"/>
</p>
## Model Details
### Key Features
* 🏅 **Super GPT-4V Trustworthiness**: By learning from open-source AI feedback, RLAIF-V-12B achieves super GPT-4V trustworthiness in both generative and discriminative tasks.
* 💪 **Maintaining Well Performance on General Abilities**: On benchmarks tested with the general abilities (e.g. LLaVA Bench, MMStar), RLAIF-V-12B also exhibits good performance.
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/ypXZxb4HE-jDPJU9115bi.png" alt="fig1" width="90%"/>
</p>
<!-- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/ypXZxb4HE-jDPJU9115bi.png) -->
### Examples
<p align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/yg-Ksp9qi8AodURSmX769.png" alt="fig2-1" width="81%"/>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6566e0c493e30c8a60048eb3/NSEkeBmH99B44rX8GTZig.png" alt="fig2-1" width="80%"/>
</p>
### Model Description
- **Related model:** [OmniLMM-12B](https://huggingface.co/openbmb/OmniLMM-12B)
- **Trained on data:** [RLAIF-V-Dataset](https://huggingface.co/datasets/HaoyeZhang/RLAIF-V-Dataset)
## Usage
Please look at [GitHub](https://github.com/RLHF-V/RLAIF-V) for more details about usage.
## Citation
If you find our model/code/paper helpful, please consider cite our papers 📝:
```bibtex
@article{yu2023rlhf,
title={Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback},
author={Yu, Tianyu and Yao, Yuan and Zhang, Haoye and He, Taiwen and Han, Yifeng and Cui, Ganqu and Hu, Jinyi and Liu, Zhiyuan and Zheng, Hai-Tao and Sun, Maosong and others},
journal={arXiv preprint arXiv:2312.00849},
year={2023}
}
@article{yu2024rlaifv,
title={RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness},
author={Yu, Tianyu and Zhang, Haoye and Yao, Yuan and Dang, Yunkai and Chen, Da and Lu, Xiaoman and Cui, Ganqu and He, Taiwen and Liu, Zhiyuan and Chua, Tat-Seng and Sun, Maosong},
journal={arXiv preprint arXiv:2405.17220},
year={2024},
}
``` |