File size: 10,024 Bytes
5fc9927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
---
language:
- en
- zh
- de
- es
- ru
- ko
- fr
- ja
- pt
- tr
- pl
- ca
- nl
- ar
- sv
- it
- id
- hi
- fi
- vi
- iw
- uk
- el
- ms
- cs
- ro
- da
- hu
- ta
- no
- th
- ur
- hr
- bg
- lt
- la
- mi
- ml
- cy
- sk
- te
- fa
- lv
- bn
- sr
- az
- sl
- kn
- et
- mk
- br
- eu
- is
- hy
- ne
- mn
- bs
- kk
- sq
- sw
- gl
- mr
- pa
- si
- km
- sn
- yo
- so
- af
- oc
- ka
- be
- tg
- sd
- gu
- am
- yi
- lo
- uz
- fo
- ht
- ps
- tk
- nn
- mt
- sa
- lb
- my
- bo
- tl
- mg
- as
- tt
- haw
- ln
- ha
- ba
- jw
- su
tags:
- speech
- audio
- automatic-speech-recognition
license: apache-2.0
---
# Whisper
[OpenAI's Whisper](https://openai.com/blog/whisper/)
The Whisper model was proposed in [Robust Speech Recognition via Large-Scale Weak Supervision](https://cdn.openai.com/papers/whisper.pdf) by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
**Disclaimer**: The team releasing Whisper wrote an official model card, which is available [here](https://github.com/openai/whisper/blob/main/model-card.md).
Content from **this** model card has been written by the Hugging Face team.
## Intro
The first paragraphs of the abstract read as follows :
> We study the capabilities of speech processing systems trained simply to predict large amounts of transcripts of audio on the internet. When scaled to 680,000 hours of multilingual and multitask supervision, the resulting models generalize well to standard benchmarks and are often competitive with prior fully supervised results but in a zeroshot transfer setting without the need for any finetuning.
> When compared to humans, the models approach their accuracy and robustness. We are releasing models and inference code to serve as a foundation for further work on robust speech processing.
The original code repository can be found [here](https://github.com/openai/whisper).
## Model description
Whisper is an auto-regressive automatic speech recognition encoder-decoder model that was trained on 680 000 hours of 16kHz sampled multilingual audio. It was fully trained in a supervised manner, with multiple tasks :
- English transcription
- Any-to-English speech translation
- Non-English transcription
- No speech prediction
To each task corresponds a sequence of tokens that are given to the decoder as *context tokens*. The beginning of a transcription always starts with `<|startoftranscript|>` which is why the `decoder_start_token` is always set to `tokenizer.encode("<|startoftranscript|>")`. The following token should be the language token, which is automatically detected in the original code. Finally, the task is define using either `<|transcribe|>` or `<|translate|>`. In addition, a `<|notimestamps|>` token is added if the task does not include timestamp prediction.
# Usage
To transcribe or translate audio files, the model has to be used along a `WhisperFeatureExtractor`.
## Transcription
In the following example, the english only model is used. We set the `decoder_input_ids` accordingly.
### English to english
The "<|en|>" token is used to specify that the speech is in english and should be transcribed to english
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> import torch
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
>>> decoder_input_ids = processor.tokenizer.encode("<|startoftranscript|><|en|><|transcribe|><|notimestamps|>", return_tensors="pt")
>>> # load dummy dataset and read soundfiles
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> # tokenize
>>> input_features = processor(ds[0]["audio"]["array"], return_tensors="pt").input_features
>>> # retrieve logits
>>> logits = model(input_features, decoder_input_ids).logits
>>> # take argmax and decode
>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> transcription = processor.batch_decode(predicted_ids)
['<|en|><|transcribe|><|notimestamps|> Mr']
```
### French to French
In order to obtain the full transcription, the `generate()` function is used. The following example demonstrates a french to french
transcription.
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> import torch
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
>>> decoder_input_ids = processor.tokenizer.encode("<|startoftranscript|><|fr|><|transcribe|><|notimestamps|>", return_tensors="pt")
>>> # load dummy dataset and read soundfiles
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]["array"]
>>> # tokenize
>>> input_features = processor(input_speech, return_tensors="pt").input_features
>>> predicted_ids = model.generate(input_features, decoder_input_ids = decoder_input_ids, max_lenght = 460_000)
>>> transcription = processor.batch_decode(predicted_ids)
['<|startoftranscript|><|fr|><|transcribe|><|notimestamps|> Un vrai travail intéressant va enfin être mené sur ce sujet.<|endoftext|>']
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens = True)
[' Un vrai travail intéressant va enfin être mené sur ce sujet.']
```
## Translation
The "<|translate|>" is used as the first decoder input token to specify the transcription task.
### French to English
```python
>>> from transformers import WhisperProcessor, WhisperForConditionalGeneration
>>> from datasets import load_dataset
>>> import torch
>>> # load model and processor
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large")
>>> decoder_input_ids = processor.tokenizer.encode("<|startoftranscript|><|fr|><|translate|><|notimestamps|>", return_tensors="pt")
>>> # load dummy dataset and read soundfiles
>>> ds = load_dataset("common_voice", "fr", split="test", streaming=True)
>>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=16_000))
>>> input_speech = next(iter(ds))["audio"]["array"]
>>> # tokenize
>>> input_features = processor(input_speech, return_tensors="pt").input_features
>>> predicted_ids = model.generate(input_features, decoder_input_ids = decoder_input_ids, max_lenght = 460_000)
>>> transcription = processor.batch_decode(predicted_ids, skip_special_tokens = True)
[' A real interesting work will be done on this subject.']
```
## Evaluation
This code snippet shows how to evaluate **openai/whisper-large** on LibriSpeech's "clean" and "other" test data.
```python
>>> from datasets import load_dataset
>>> from transformers import WhisperForConditionalGeneration, WhisperProcessor
>>> import soundfile as sf
>>> import torch
>>> from jiwer import wer
>>> librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
>>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-large").to("cuda")
>>> processor = WhisperProcessor.from_pretrained("openai/whisper-large")
>>> def map_to_pred(batch):
>>> input_features = processor(batch["audio"]["array"], return_tensors="pt").input_features
>>> with torch.no_grad():
>>> logits = model(input_features.to("cuda")).logits
>>> predicted_ids = torch.argmax(logits, dim=-1)
>>> transcription = processor.batch_decode(predicted_ids, normalize = True)
>>> batch['text'] = processor.tokenizer._normalize(batch['text'])
>>> batch["transcription"] = transcription
>>> return batch
>>> result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
>>> print("WER:", wer(result["text"], result["transcription"]))
0.030003583080317572
```
## Training Data
Out of the 680 000 hours of training data, 65% are English language audio and their corresponding transcript. 18% of the remaining data is non-English audio and their corresponding translated transcript in english, while the remaining 17% are non english audio with their non english transcript. This non-English data represents 98 different languages.
As discussed in [the accompanying paper](https://cdn.openai.com/papers/whisper.pdf), we see that performance on transcription in a given language is directly correlated with the amount of training data we employ in that language.
## Performance and Limitations
Whisper shows strong robustness to accents, background noise, technical language, as well as zero shot translation from multiple languages into English; and that accuracy on speech recognition and translation is near the state-of-the-art level. The results are all highly correlated with the available training data in the studied language.
A common model hallucination (a predicted text that is not present in the audio) includes notably classic ending of youtube video : "Thank you for listening. Please subscribe to the channel".
The authors also mention that :
> The sequence-to-sequence architecture of the model makes it prone to generating repetitive texts, which can be mitigated to some degree by beam search and temperature scheduling but not perfectly. Further analysis on these limitations are provided in [the paper](https://cdn.openai.com/papers/whisper.pdf). It is likely that this behavior and hallucinations may be worse on lower-resource and/or lower-discoverability languages.
### BibTeX entry and citation info
```bibtex
@misc{zhang2022opt,
title={Robust Speech Recognition via Large-Scale Weak Supervision.},
author={Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever},
year={2022},
url={https://cdn.openai.com/papers/whisper.pdf},
}
```
|