File size: 4,624 Bytes
35e6793
f433e80
a6f8764
 
0871b1d
f433e80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35e6793
2ad232e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f433e80
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
license: apache-2.0
datasets:
- openagi-project/OpenAGI-set-dpo-v0.1
base_model: freecs/ThetaWave-7B-v0.1
model-index:
- name: OpenAGI-7B-v0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 66.72
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=openagi-project/OpenAGI-7B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.13
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=openagi-project/OpenAGI-7B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=openagi-project/OpenAGI-7B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 69.55
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=openagi-project/OpenAGI-7B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.48
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=openagi-project/OpenAGI-7B-v0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.63
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=openagi-project/OpenAGI-7B-v0.1
      name: Open LLM Leaderboard
---

# OpenAGI-7B-v0.1

DPO tuned on a small set of GPT4 generated responses.

Give it a try:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda"  # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("openagi-project/OpenAGI-7B-v0.1")
tokenizer = AutoTokenizer.from_pretrained("openagi-project/OpenAGI-7B-v0.1")

messages = [
    {"role": "user", "content": "Who are you?"},
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

*" My goal as the founder of FreeCS.org is to establish an Open-Source AI Research Lab driven by its Community. Currently, I am the sole contributor at FreeCS.org. If you share our vision, we welcome you to join our community and contribute to our mission at [freecs.org/#community](https://freecs.org/#community). "*             
 |- [GR](https://twitter.com/gr_username)


If you'd like to support this project, kindly consider making a [donation](https://freecs.org/donate).
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_openagi-project__OpenAGI-7B-v0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |70.34|
|AI2 Reasoning Challenge (25-Shot)|66.72|
|HellaSwag (10-Shot)              |86.13|
|MMLU (5-Shot)                    |63.53|
|TruthfulQA (0-shot)              |69.55|
|Winogrande (5-shot)              |79.48|
|GSM8k (5-shot)                   |56.63|