onuralp commited on
Commit
b394098
1 Parent(s): e50047d

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: qlora-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # qlora-out
16
+
17
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5840
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0003
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 8
43
+ - total_train_batch_size: 32
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_steps: 300
47
+ - num_epochs: 3
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 0.767 | 0.24 | 20 | 0.6343 |
54
+ | 0.6849 | 0.48 | 40 | 0.5669 |
55
+ | 0.6761 | 0.72 | 60 | 0.5247 |
56
+ | 0.5534 | 0.96 | 80 | 0.5044 |
57
+ | 0.4757 | 1.2 | 100 | 0.5023 |
58
+ | 0.5158 | 1.44 | 120 | 0.4883 |
59
+ | 0.5414 | 1.68 | 140 | 0.4809 |
60
+ | 0.4715 | 1.92 | 160 | 0.4748 |
61
+ | 0.4037 | 2.16 | 180 | 0.4873 |
62
+ | 0.4213 | 2.4 | 200 | 0.5194 |
63
+ | 0.2988 | 2.64 | 220 | 0.6278 |
64
+ | 0.3477 | 2.88 | 240 | 0.5840 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.34.1
70
+ - Pytorch 2.0.1+cu118
71
+ - Datasets 2.14.6
72
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "k_proj",
21
+ "up_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e842683bfb66221f206c6cdad2956f3bb4a757a02dd45f5f3bbfbef87746bc0
3
+ size 671250189
checkpoint-166/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-166/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "k_proj",
21
+ "up_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-166/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:166fc8f89f9ca0b3dddf118720d2539c6372bf55d5d9bb2841316aa253632974
3
+ size 671250189
checkpoint-166/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7a575d9e6b8d05571ccf75e4a7730b9a7421fa147e98c4aa2215290dcae9b9d
3
+ size 336724767
checkpoint-166/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6071068c8352dee689d3b7fdbd57ddb4970ea215124748737b761bf5a805e6c
3
+ size 14575
checkpoint-166/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3beff71e0e44718131cd3e9e920e1b706ca54992b31cf4135d21c8c0ff363a95
3
+ size 627
checkpoint-166/trainer_state.json ADDED
@@ -0,0 +1,1079 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9910044977511245,
5
+ "eval_steps": 20,
6
+ "global_step": 166,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-06,
14
+ "loss": 2.4137,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 2e-06,
20
+ "loss": 2.5757,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 2.9999999999999997e-06,
26
+ "loss": 2.2254,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4e-06,
32
+ "loss": 2.3859,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.06,
37
+ "learning_rate": 4.9999999999999996e-06,
38
+ "loss": 2.2279,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.07,
43
+ "learning_rate": 5.999999999999999e-06,
44
+ "loss": 2.4677,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.08,
49
+ "learning_rate": 7e-06,
50
+ "loss": 2.3097,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.1,
55
+ "learning_rate": 8e-06,
56
+ "loss": 2.1753,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.11,
61
+ "learning_rate": 8.999999999999999e-06,
62
+ "loss": 1.9567,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.12,
67
+ "learning_rate": 9.999999999999999e-06,
68
+ "loss": 1.4897,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.13,
73
+ "learning_rate": 1.1e-05,
74
+ "loss": 1.3339,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.14,
79
+ "learning_rate": 1.1999999999999999e-05,
80
+ "loss": 1.2799,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.16,
85
+ "learning_rate": 1.3e-05,
86
+ "loss": 0.941,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.17,
91
+ "learning_rate": 1.4e-05,
92
+ "loss": 0.9046,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.18,
97
+ "learning_rate": 1.4999999999999999e-05,
98
+ "loss": 0.8112,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.19,
103
+ "learning_rate": 1.6e-05,
104
+ "loss": 0.8297,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.2,
109
+ "learning_rate": 1.6999999999999996e-05,
110
+ "loss": 0.7657,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.22,
115
+ "learning_rate": 1.7999999999999997e-05,
116
+ "loss": 0.8527,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.23,
121
+ "learning_rate": 1.9e-05,
122
+ "loss": 0.8213,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.24,
127
+ "learning_rate": 1.9999999999999998e-05,
128
+ "loss": 0.767,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.24,
133
+ "eval_loss": 0.6342860460281372,
134
+ "eval_runtime": 35.077,
135
+ "eval_samples_per_second": 46.441,
136
+ "eval_steps_per_second": 11.632,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.25,
141
+ "learning_rate": 2.1e-05,
142
+ "loss": 0.8794,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.26,
147
+ "learning_rate": 2.2e-05,
148
+ "loss": 0.7471,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.28,
153
+ "learning_rate": 2.2999999999999997e-05,
154
+ "loss": 0.8795,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.29,
159
+ "learning_rate": 2.3999999999999997e-05,
160
+ "loss": 0.7741,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.3,
165
+ "learning_rate": 2.4999999999999998e-05,
166
+ "loss": 0.774,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.31,
171
+ "learning_rate": 2.6e-05,
172
+ "loss": 0.7771,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.32,
177
+ "learning_rate": 2.6999999999999996e-05,
178
+ "loss": 0.8314,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.34,
183
+ "learning_rate": 2.8e-05,
184
+ "loss": 0.6423,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.35,
189
+ "learning_rate": 2.8999999999999997e-05,
190
+ "loss": 0.8044,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.36,
195
+ "learning_rate": 2.9999999999999997e-05,
196
+ "loss": 0.6982,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.37,
201
+ "learning_rate": 3.0999999999999995e-05,
202
+ "loss": 0.7646,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.38,
207
+ "learning_rate": 3.2e-05,
208
+ "loss": 0.7309,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.4,
213
+ "learning_rate": 3.2999999999999996e-05,
214
+ "loss": 0.7731,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.41,
219
+ "learning_rate": 3.399999999999999e-05,
220
+ "loss": 0.7677,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.42,
225
+ "learning_rate": 3.5e-05,
226
+ "loss": 0.6812,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.43,
231
+ "learning_rate": 3.5999999999999994e-05,
232
+ "loss": 0.7012,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.44,
237
+ "learning_rate": 3.7e-05,
238
+ "loss": 0.743,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.46,
243
+ "learning_rate": 3.8e-05,
244
+ "loss": 0.7018,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.47,
249
+ "learning_rate": 3.9e-05,
250
+ "loss": 0.6283,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.48,
255
+ "learning_rate": 3.9999999999999996e-05,
256
+ "loss": 0.6849,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.48,
261
+ "eval_loss": 0.5668678283691406,
262
+ "eval_runtime": 35.2083,
263
+ "eval_samples_per_second": 46.268,
264
+ "eval_steps_per_second": 11.588,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.49,
269
+ "learning_rate": 4.0999999999999994e-05,
270
+ "loss": 0.674,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.5,
275
+ "learning_rate": 4.2e-05,
276
+ "loss": 0.6649,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.52,
281
+ "learning_rate": 4.3e-05,
282
+ "loss": 0.6876,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.53,
287
+ "learning_rate": 4.4e-05,
288
+ "loss": 0.6865,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.54,
293
+ "learning_rate": 4.4999999999999996e-05,
294
+ "loss": 0.7319,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.55,
299
+ "learning_rate": 4.599999999999999e-05,
300
+ "loss": 0.6688,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.56,
305
+ "learning_rate": 4.7e-05,
306
+ "loss": 0.737,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.58,
311
+ "learning_rate": 4.7999999999999994e-05,
312
+ "loss": 0.6599,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.59,
317
+ "learning_rate": 4.899999999999999e-05,
318
+ "loss": 0.6748,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.6,
323
+ "learning_rate": 4.9999999999999996e-05,
324
+ "loss": 0.7997,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.61,
329
+ "learning_rate": 5.1e-05,
330
+ "loss": 0.6429,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.62,
335
+ "learning_rate": 5.2e-05,
336
+ "loss": 0.6107,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.64,
341
+ "learning_rate": 5.2999999999999994e-05,
342
+ "loss": 0.7678,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.65,
347
+ "learning_rate": 5.399999999999999e-05,
348
+ "loss": 0.686,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.66,
353
+ "learning_rate": 5.499999999999999e-05,
354
+ "loss": 0.6825,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.67,
359
+ "learning_rate": 5.6e-05,
360
+ "loss": 0.5791,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.68,
365
+ "learning_rate": 5.6999999999999996e-05,
366
+ "loss": 0.7382,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.7,
371
+ "learning_rate": 5.7999999999999994e-05,
372
+ "loss": 0.6888,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.71,
377
+ "learning_rate": 5.899999999999999e-05,
378
+ "loss": 0.6067,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.72,
383
+ "learning_rate": 5.9999999999999995e-05,
384
+ "loss": 0.6761,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.72,
389
+ "eval_loss": 0.5247214436531067,
390
+ "eval_runtime": 35.3754,
391
+ "eval_samples_per_second": 46.049,
392
+ "eval_steps_per_second": 11.533,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.73,
397
+ "learning_rate": 6.1e-05,
398
+ "loss": 0.6388,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.74,
403
+ "learning_rate": 6.199999999999999e-05,
404
+ "loss": 0.5719,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.76,
409
+ "learning_rate": 6.299999999999999e-05,
410
+ "loss": 0.6878,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.77,
415
+ "learning_rate": 6.4e-05,
416
+ "loss": 0.6075,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.78,
421
+ "learning_rate": 6.5e-05,
422
+ "loss": 0.583,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.79,
427
+ "learning_rate": 6.599999999999999e-05,
428
+ "loss": 0.6215,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.8,
433
+ "learning_rate": 6.699999999999999e-05,
434
+ "loss": 0.6645,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.82,
439
+ "learning_rate": 6.799999999999999e-05,
440
+ "loss": 0.6785,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.83,
445
+ "learning_rate": 6.9e-05,
446
+ "loss": 0.5568,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.84,
451
+ "learning_rate": 7e-05,
452
+ "loss": 0.5797,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.85,
457
+ "learning_rate": 7.099999999999999e-05,
458
+ "loss": 0.6467,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.86,
463
+ "learning_rate": 7.199999999999999e-05,
464
+ "loss": 0.5555,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.88,
469
+ "learning_rate": 7.3e-05,
470
+ "loss": 0.6119,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.89,
475
+ "learning_rate": 7.4e-05,
476
+ "loss": 0.6903,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.9,
481
+ "learning_rate": 7.5e-05,
482
+ "loss": 0.6461,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.91,
487
+ "learning_rate": 7.6e-05,
488
+ "loss": 0.5789,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.92,
493
+ "learning_rate": 7.699999999999999e-05,
494
+ "loss": 0.5349,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.94,
499
+ "learning_rate": 7.8e-05,
500
+ "loss": 0.5261,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.95,
505
+ "learning_rate": 7.899999999999998e-05,
506
+ "loss": 0.6659,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.96,
511
+ "learning_rate": 7.999999999999999e-05,
512
+ "loss": 0.5534,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.96,
517
+ "eval_loss": 0.5044009685516357,
518
+ "eval_runtime": 35.1756,
519
+ "eval_samples_per_second": 46.31,
520
+ "eval_steps_per_second": 11.599,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.97,
525
+ "learning_rate": 8.1e-05,
526
+ "loss": 0.5247,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.98,
531
+ "learning_rate": 8.199999999999999e-05,
532
+ "loss": 0.6016,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 1.0,
537
+ "learning_rate": 8.3e-05,
538
+ "loss": 0.642,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 1.01,
543
+ "learning_rate": 8.4e-05,
544
+ "loss": 0.6376,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 1.02,
549
+ "learning_rate": 8.499999999999999e-05,
550
+ "loss": 0.6491,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 1.03,
555
+ "learning_rate": 8.6e-05,
556
+ "loss": 0.5976,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 1.04,
561
+ "learning_rate": 8.699999999999999e-05,
562
+ "loss": 0.6259,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 1.06,
567
+ "learning_rate": 8.8e-05,
568
+ "loss": 0.515,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 1.07,
573
+ "learning_rate": 8.9e-05,
574
+ "loss": 0.5182,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 1.08,
579
+ "learning_rate": 8.999999999999999e-05,
580
+ "loss": 0.4986,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 1.09,
585
+ "learning_rate": 9.099999999999999e-05,
586
+ "loss": 0.5622,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 1.1,
591
+ "learning_rate": 9.199999999999999e-05,
592
+ "loss": 0.6323,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 1.12,
597
+ "learning_rate": 9.3e-05,
598
+ "loss": 0.5946,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 1.13,
603
+ "learning_rate": 9.4e-05,
604
+ "loss": 0.5888,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 1.14,
609
+ "learning_rate": 9.499999999999999e-05,
610
+ "loss": 0.526,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 1.15,
615
+ "learning_rate": 9.599999999999999e-05,
616
+ "loss": 0.5157,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 1.16,
621
+ "learning_rate": 9.699999999999999e-05,
622
+ "loss": 0.4719,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 1.18,
627
+ "learning_rate": 9.799999999999998e-05,
628
+ "loss": 0.5578,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 1.19,
633
+ "learning_rate": 9.9e-05,
634
+ "loss": 0.5357,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 1.2,
639
+ "learning_rate": 9.999999999999999e-05,
640
+ "loss": 0.4757,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 1.2,
645
+ "eval_loss": 0.5023330450057983,
646
+ "eval_runtime": 35.2525,
647
+ "eval_samples_per_second": 46.21,
648
+ "eval_steps_per_second": 11.574,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 1.21,
653
+ "learning_rate": 0.00010099999999999999,
654
+ "loss": 0.5517,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 1.22,
659
+ "learning_rate": 0.000102,
660
+ "loss": 0.4868,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 1.24,
665
+ "learning_rate": 0.00010299999999999998,
666
+ "loss": 0.5257,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 1.25,
671
+ "learning_rate": 0.000104,
672
+ "loss": 0.5651,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 1.26,
677
+ "learning_rate": 0.00010499999999999999,
678
+ "loss": 0.5424,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 1.27,
683
+ "learning_rate": 0.00010599999999999999,
684
+ "loss": 0.5472,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 1.28,
689
+ "learning_rate": 0.000107,
690
+ "loss": 0.5045,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 1.3,
695
+ "learning_rate": 0.00010799999999999998,
696
+ "loss": 0.5533,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 1.31,
701
+ "learning_rate": 0.00010899999999999999,
702
+ "loss": 0.479,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 1.32,
707
+ "learning_rate": 0.00010999999999999998,
708
+ "loss": 0.5794,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 1.33,
713
+ "learning_rate": 0.00011099999999999999,
714
+ "loss": 0.487,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 1.34,
719
+ "learning_rate": 0.000112,
720
+ "loss": 0.6611,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 1.36,
725
+ "learning_rate": 0.00011299999999999998,
726
+ "loss": 0.4638,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 1.37,
731
+ "learning_rate": 0.00011399999999999999,
732
+ "loss": 0.5047,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 1.38,
737
+ "learning_rate": 0.000115,
738
+ "loss": 0.4416,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 1.39,
743
+ "learning_rate": 0.00011599999999999999,
744
+ "loss": 0.4736,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 1.4,
749
+ "learning_rate": 0.000117,
750
+ "loss": 0.545,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 1.42,
755
+ "learning_rate": 0.00011799999999999998,
756
+ "loss": 0.502,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 1.43,
761
+ "learning_rate": 0.00011899999999999999,
762
+ "loss": 0.5108,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 1.44,
767
+ "learning_rate": 0.00011999999999999999,
768
+ "loss": 0.5158,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 1.44,
773
+ "eval_loss": 0.4883132874965668,
774
+ "eval_runtime": 35.2497,
775
+ "eval_samples_per_second": 46.213,
776
+ "eval_steps_per_second": 11.575,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 1.45,
781
+ "learning_rate": 0.00012099999999999999,
782
+ "loss": 0.5845,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 1.46,
787
+ "learning_rate": 0.000122,
788
+ "loss": 0.52,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 1.48,
793
+ "learning_rate": 0.00012299999999999998,
794
+ "loss": 0.4885,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 1.49,
799
+ "learning_rate": 0.00012399999999999998,
800
+ "loss": 0.4641,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 1.5,
805
+ "learning_rate": 0.000125,
806
+ "loss": 0.5046,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 1.51,
811
+ "learning_rate": 0.00012599999999999997,
812
+ "loss": 0.5195,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 1.52,
817
+ "learning_rate": 0.000127,
818
+ "loss": 0.512,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 1.54,
823
+ "learning_rate": 0.000128,
824
+ "loss": 0.4458,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 1.55,
829
+ "learning_rate": 0.000129,
830
+ "loss": 0.5912,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 1.56,
835
+ "learning_rate": 0.00013,
836
+ "loss": 0.4515,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 1.57,
841
+ "learning_rate": 0.00013099999999999999,
842
+ "loss": 0.5619,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 1.58,
847
+ "learning_rate": 0.00013199999999999998,
848
+ "loss": 0.7071,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 1.6,
853
+ "learning_rate": 0.000133,
854
+ "loss": 0.5515,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 1.61,
859
+ "learning_rate": 0.00013399999999999998,
860
+ "loss": 0.4863,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 1.62,
865
+ "learning_rate": 0.000135,
866
+ "loss": 0.5102,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 1.63,
871
+ "learning_rate": 0.00013599999999999997,
872
+ "loss": 0.4338,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 1.64,
877
+ "learning_rate": 0.000137,
878
+ "loss": 0.5132,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 1.66,
883
+ "learning_rate": 0.000138,
884
+ "loss": 0.5793,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 1.67,
889
+ "learning_rate": 0.000139,
890
+ "loss": 0.4992,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 1.68,
895
+ "learning_rate": 0.00014,
896
+ "loss": 0.5414,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 1.68,
901
+ "eval_loss": 0.48085713386535645,
902
+ "eval_runtime": 35.2966,
903
+ "eval_samples_per_second": 46.152,
904
+ "eval_steps_per_second": 11.559,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 1.69,
909
+ "learning_rate": 0.00014099999999999998,
910
+ "loss": 0.5303,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 1.7,
915
+ "learning_rate": 0.00014199999999999998,
916
+ "loss": 0.4456,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 1.72,
921
+ "learning_rate": 0.00014299999999999998,
922
+ "loss": 0.5117,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 1.73,
927
+ "learning_rate": 0.00014399999999999998,
928
+ "loss": 0.6139,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 1.74,
933
+ "learning_rate": 0.000145,
934
+ "loss": 0.4346,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 1.75,
939
+ "learning_rate": 0.000146,
940
+ "loss": 0.5148,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 1.76,
945
+ "learning_rate": 0.000147,
946
+ "loss": 0.4928,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 1.78,
951
+ "learning_rate": 0.000148,
952
+ "loss": 0.6429,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 1.79,
957
+ "learning_rate": 0.000149,
958
+ "loss": 0.4687,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 1.8,
963
+ "learning_rate": 0.00015,
964
+ "loss": 0.6071,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 1.81,
969
+ "learning_rate": 0.00015099999999999998,
970
+ "loss": 0.5215,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 1.82,
975
+ "learning_rate": 0.000152,
976
+ "loss": 0.5806,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 1.84,
981
+ "learning_rate": 0.00015299999999999998,
982
+ "loss": 0.5801,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 1.85,
987
+ "learning_rate": 0.00015399999999999998,
988
+ "loss": 0.5104,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 1.86,
993
+ "learning_rate": 0.000155,
994
+ "loss": 0.5002,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 1.87,
999
+ "learning_rate": 0.000156,
1000
+ "loss": 0.508,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 1.88,
1005
+ "learning_rate": 0.000157,
1006
+ "loss": 0.5223,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 1.9,
1011
+ "learning_rate": 0.00015799999999999996,
1012
+ "loss": 0.6085,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 1.91,
1017
+ "learning_rate": 0.000159,
1018
+ "loss": 0.5328,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 1.92,
1023
+ "learning_rate": 0.00015999999999999999,
1024
+ "loss": 0.4715,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 1.92,
1029
+ "eval_loss": 0.47481799125671387,
1030
+ "eval_runtime": 35.1736,
1031
+ "eval_samples_per_second": 46.313,
1032
+ "eval_steps_per_second": 11.6,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 1.93,
1037
+ "learning_rate": 0.00016099999999999998,
1038
+ "loss": 0.4352,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 1.94,
1043
+ "learning_rate": 0.000162,
1044
+ "loss": 0.5532,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 1.96,
1049
+ "learning_rate": 0.00016299999999999998,
1050
+ "loss": 0.4916,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 1.97,
1055
+ "learning_rate": 0.00016399999999999997,
1056
+ "loss": 0.4879,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 1.98,
1061
+ "learning_rate": 0.000165,
1062
+ "loss": 0.5124,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 1.99,
1067
+ "learning_rate": 0.000166,
1068
+ "loss": 0.5515,
1069
+ "step": 166
1070
+ }
1071
+ ],
1072
+ "logging_steps": 1,
1073
+ "max_steps": 249,
1074
+ "num_train_epochs": 3,
1075
+ "save_steps": 500,
1076
+ "total_flos": 1.9089513439895224e+18,
1077
+ "trial_name": null,
1078
+ "trial_params": null
1079
+ }
checkpoint-166/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e3830cab5058e45763dede36e071a76743149bc2f5b60978574c35a5bc13fec
3
+ size 4475
checkpoint-249/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-249/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "k_proj",
21
+ "up_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-249/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e842683bfb66221f206c6cdad2956f3bb4a757a02dd45f5f3bbfbef87746bc0
3
+ size 671250189
checkpoint-249/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee8982ad64c81a0df8795522afcb555f89d6198fba82986cfb15fef3f1b8a89f
3
+ size 336724767
checkpoint-249/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f78a6a48a2f624c740dd3a8978a9ce724f04e57dd54a98aa7e753be0aed1e62f
3
+ size 14575
checkpoint-249/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ea3ac0912b94b9d0e20278fdb566e2c63f1b1e767a3a1f745ab597bb46814bf
3
+ size 627
checkpoint-249/trainer_state.json ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9865067466266866,
5
+ "eval_steps": 20,
6
+ "global_step": 249,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-06,
14
+ "loss": 2.4137,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 2e-06,
20
+ "loss": 2.5757,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 2.9999999999999997e-06,
26
+ "loss": 2.2254,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4e-06,
32
+ "loss": 2.3859,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.06,
37
+ "learning_rate": 4.9999999999999996e-06,
38
+ "loss": 2.2279,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.07,
43
+ "learning_rate": 5.999999999999999e-06,
44
+ "loss": 2.4677,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.08,
49
+ "learning_rate": 7e-06,
50
+ "loss": 2.3097,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.1,
55
+ "learning_rate": 8e-06,
56
+ "loss": 2.1753,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.11,
61
+ "learning_rate": 8.999999999999999e-06,
62
+ "loss": 1.9567,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.12,
67
+ "learning_rate": 9.999999999999999e-06,
68
+ "loss": 1.4897,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.13,
73
+ "learning_rate": 1.1e-05,
74
+ "loss": 1.3339,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.14,
79
+ "learning_rate": 1.1999999999999999e-05,
80
+ "loss": 1.2799,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.16,
85
+ "learning_rate": 1.3e-05,
86
+ "loss": 0.941,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.17,
91
+ "learning_rate": 1.4e-05,
92
+ "loss": 0.9046,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.18,
97
+ "learning_rate": 1.4999999999999999e-05,
98
+ "loss": 0.8112,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.19,
103
+ "learning_rate": 1.6e-05,
104
+ "loss": 0.8297,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.2,
109
+ "learning_rate": 1.6999999999999996e-05,
110
+ "loss": 0.7657,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.22,
115
+ "learning_rate": 1.7999999999999997e-05,
116
+ "loss": 0.8527,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.23,
121
+ "learning_rate": 1.9e-05,
122
+ "loss": 0.8213,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.24,
127
+ "learning_rate": 1.9999999999999998e-05,
128
+ "loss": 0.767,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.24,
133
+ "eval_loss": 0.6342860460281372,
134
+ "eval_runtime": 35.077,
135
+ "eval_samples_per_second": 46.441,
136
+ "eval_steps_per_second": 11.632,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.25,
141
+ "learning_rate": 2.1e-05,
142
+ "loss": 0.8794,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.26,
147
+ "learning_rate": 2.2e-05,
148
+ "loss": 0.7471,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.28,
153
+ "learning_rate": 2.2999999999999997e-05,
154
+ "loss": 0.8795,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.29,
159
+ "learning_rate": 2.3999999999999997e-05,
160
+ "loss": 0.7741,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.3,
165
+ "learning_rate": 2.4999999999999998e-05,
166
+ "loss": 0.774,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.31,
171
+ "learning_rate": 2.6e-05,
172
+ "loss": 0.7771,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.32,
177
+ "learning_rate": 2.6999999999999996e-05,
178
+ "loss": 0.8314,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.34,
183
+ "learning_rate": 2.8e-05,
184
+ "loss": 0.6423,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.35,
189
+ "learning_rate": 2.8999999999999997e-05,
190
+ "loss": 0.8044,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.36,
195
+ "learning_rate": 2.9999999999999997e-05,
196
+ "loss": 0.6982,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.37,
201
+ "learning_rate": 3.0999999999999995e-05,
202
+ "loss": 0.7646,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.38,
207
+ "learning_rate": 3.2e-05,
208
+ "loss": 0.7309,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.4,
213
+ "learning_rate": 3.2999999999999996e-05,
214
+ "loss": 0.7731,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.41,
219
+ "learning_rate": 3.399999999999999e-05,
220
+ "loss": 0.7677,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.42,
225
+ "learning_rate": 3.5e-05,
226
+ "loss": 0.6812,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.43,
231
+ "learning_rate": 3.5999999999999994e-05,
232
+ "loss": 0.7012,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.44,
237
+ "learning_rate": 3.7e-05,
238
+ "loss": 0.743,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.46,
243
+ "learning_rate": 3.8e-05,
244
+ "loss": 0.7018,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.47,
249
+ "learning_rate": 3.9e-05,
250
+ "loss": 0.6283,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.48,
255
+ "learning_rate": 3.9999999999999996e-05,
256
+ "loss": 0.6849,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.48,
261
+ "eval_loss": 0.5668678283691406,
262
+ "eval_runtime": 35.2083,
263
+ "eval_samples_per_second": 46.268,
264
+ "eval_steps_per_second": 11.588,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.49,
269
+ "learning_rate": 4.0999999999999994e-05,
270
+ "loss": 0.674,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.5,
275
+ "learning_rate": 4.2e-05,
276
+ "loss": 0.6649,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.52,
281
+ "learning_rate": 4.3e-05,
282
+ "loss": 0.6876,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.53,
287
+ "learning_rate": 4.4e-05,
288
+ "loss": 0.6865,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.54,
293
+ "learning_rate": 4.4999999999999996e-05,
294
+ "loss": 0.7319,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.55,
299
+ "learning_rate": 4.599999999999999e-05,
300
+ "loss": 0.6688,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.56,
305
+ "learning_rate": 4.7e-05,
306
+ "loss": 0.737,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.58,
311
+ "learning_rate": 4.7999999999999994e-05,
312
+ "loss": 0.6599,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.59,
317
+ "learning_rate": 4.899999999999999e-05,
318
+ "loss": 0.6748,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.6,
323
+ "learning_rate": 4.9999999999999996e-05,
324
+ "loss": 0.7997,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.61,
329
+ "learning_rate": 5.1e-05,
330
+ "loss": 0.6429,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.62,
335
+ "learning_rate": 5.2e-05,
336
+ "loss": 0.6107,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.64,
341
+ "learning_rate": 5.2999999999999994e-05,
342
+ "loss": 0.7678,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.65,
347
+ "learning_rate": 5.399999999999999e-05,
348
+ "loss": 0.686,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.66,
353
+ "learning_rate": 5.499999999999999e-05,
354
+ "loss": 0.6825,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.67,
359
+ "learning_rate": 5.6e-05,
360
+ "loss": 0.5791,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.68,
365
+ "learning_rate": 5.6999999999999996e-05,
366
+ "loss": 0.7382,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.7,
371
+ "learning_rate": 5.7999999999999994e-05,
372
+ "loss": 0.6888,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.71,
377
+ "learning_rate": 5.899999999999999e-05,
378
+ "loss": 0.6067,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.72,
383
+ "learning_rate": 5.9999999999999995e-05,
384
+ "loss": 0.6761,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.72,
389
+ "eval_loss": 0.5247214436531067,
390
+ "eval_runtime": 35.3754,
391
+ "eval_samples_per_second": 46.049,
392
+ "eval_steps_per_second": 11.533,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.73,
397
+ "learning_rate": 6.1e-05,
398
+ "loss": 0.6388,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.74,
403
+ "learning_rate": 6.199999999999999e-05,
404
+ "loss": 0.5719,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.76,
409
+ "learning_rate": 6.299999999999999e-05,
410
+ "loss": 0.6878,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.77,
415
+ "learning_rate": 6.4e-05,
416
+ "loss": 0.6075,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.78,
421
+ "learning_rate": 6.5e-05,
422
+ "loss": 0.583,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.79,
427
+ "learning_rate": 6.599999999999999e-05,
428
+ "loss": 0.6215,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.8,
433
+ "learning_rate": 6.699999999999999e-05,
434
+ "loss": 0.6645,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.82,
439
+ "learning_rate": 6.799999999999999e-05,
440
+ "loss": 0.6785,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.83,
445
+ "learning_rate": 6.9e-05,
446
+ "loss": 0.5568,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.84,
451
+ "learning_rate": 7e-05,
452
+ "loss": 0.5797,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.85,
457
+ "learning_rate": 7.099999999999999e-05,
458
+ "loss": 0.6467,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.86,
463
+ "learning_rate": 7.199999999999999e-05,
464
+ "loss": 0.5555,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.88,
469
+ "learning_rate": 7.3e-05,
470
+ "loss": 0.6119,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.89,
475
+ "learning_rate": 7.4e-05,
476
+ "loss": 0.6903,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.9,
481
+ "learning_rate": 7.5e-05,
482
+ "loss": 0.6461,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.91,
487
+ "learning_rate": 7.6e-05,
488
+ "loss": 0.5789,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.92,
493
+ "learning_rate": 7.699999999999999e-05,
494
+ "loss": 0.5349,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.94,
499
+ "learning_rate": 7.8e-05,
500
+ "loss": 0.5261,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.95,
505
+ "learning_rate": 7.899999999999998e-05,
506
+ "loss": 0.6659,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.96,
511
+ "learning_rate": 7.999999999999999e-05,
512
+ "loss": 0.5534,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.96,
517
+ "eval_loss": 0.5044009685516357,
518
+ "eval_runtime": 35.1756,
519
+ "eval_samples_per_second": 46.31,
520
+ "eval_steps_per_second": 11.599,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.97,
525
+ "learning_rate": 8.1e-05,
526
+ "loss": 0.5247,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.98,
531
+ "learning_rate": 8.199999999999999e-05,
532
+ "loss": 0.6016,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 1.0,
537
+ "learning_rate": 8.3e-05,
538
+ "loss": 0.642,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 1.01,
543
+ "learning_rate": 8.4e-05,
544
+ "loss": 0.6376,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 1.02,
549
+ "learning_rate": 8.499999999999999e-05,
550
+ "loss": 0.6491,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 1.03,
555
+ "learning_rate": 8.6e-05,
556
+ "loss": 0.5976,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 1.04,
561
+ "learning_rate": 8.699999999999999e-05,
562
+ "loss": 0.6259,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 1.06,
567
+ "learning_rate": 8.8e-05,
568
+ "loss": 0.515,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 1.07,
573
+ "learning_rate": 8.9e-05,
574
+ "loss": 0.5182,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 1.08,
579
+ "learning_rate": 8.999999999999999e-05,
580
+ "loss": 0.4986,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 1.09,
585
+ "learning_rate": 9.099999999999999e-05,
586
+ "loss": 0.5622,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 1.1,
591
+ "learning_rate": 9.199999999999999e-05,
592
+ "loss": 0.6323,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 1.12,
597
+ "learning_rate": 9.3e-05,
598
+ "loss": 0.5946,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 1.13,
603
+ "learning_rate": 9.4e-05,
604
+ "loss": 0.5888,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 1.14,
609
+ "learning_rate": 9.499999999999999e-05,
610
+ "loss": 0.526,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 1.15,
615
+ "learning_rate": 9.599999999999999e-05,
616
+ "loss": 0.5157,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 1.16,
621
+ "learning_rate": 9.699999999999999e-05,
622
+ "loss": 0.4719,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 1.18,
627
+ "learning_rate": 9.799999999999998e-05,
628
+ "loss": 0.5578,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 1.19,
633
+ "learning_rate": 9.9e-05,
634
+ "loss": 0.5357,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 1.2,
639
+ "learning_rate": 9.999999999999999e-05,
640
+ "loss": 0.4757,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 1.2,
645
+ "eval_loss": 0.5023330450057983,
646
+ "eval_runtime": 35.2525,
647
+ "eval_samples_per_second": 46.21,
648
+ "eval_steps_per_second": 11.574,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 1.21,
653
+ "learning_rate": 0.00010099999999999999,
654
+ "loss": 0.5517,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 1.22,
659
+ "learning_rate": 0.000102,
660
+ "loss": 0.4868,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 1.24,
665
+ "learning_rate": 0.00010299999999999998,
666
+ "loss": 0.5257,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 1.25,
671
+ "learning_rate": 0.000104,
672
+ "loss": 0.5651,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 1.26,
677
+ "learning_rate": 0.00010499999999999999,
678
+ "loss": 0.5424,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 1.27,
683
+ "learning_rate": 0.00010599999999999999,
684
+ "loss": 0.5472,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 1.28,
689
+ "learning_rate": 0.000107,
690
+ "loss": 0.5045,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 1.3,
695
+ "learning_rate": 0.00010799999999999998,
696
+ "loss": 0.5533,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 1.31,
701
+ "learning_rate": 0.00010899999999999999,
702
+ "loss": 0.479,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 1.32,
707
+ "learning_rate": 0.00010999999999999998,
708
+ "loss": 0.5794,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 1.33,
713
+ "learning_rate": 0.00011099999999999999,
714
+ "loss": 0.487,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 1.34,
719
+ "learning_rate": 0.000112,
720
+ "loss": 0.6611,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 1.36,
725
+ "learning_rate": 0.00011299999999999998,
726
+ "loss": 0.4638,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 1.37,
731
+ "learning_rate": 0.00011399999999999999,
732
+ "loss": 0.5047,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 1.38,
737
+ "learning_rate": 0.000115,
738
+ "loss": 0.4416,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 1.39,
743
+ "learning_rate": 0.00011599999999999999,
744
+ "loss": 0.4736,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 1.4,
749
+ "learning_rate": 0.000117,
750
+ "loss": 0.545,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 1.42,
755
+ "learning_rate": 0.00011799999999999998,
756
+ "loss": 0.502,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 1.43,
761
+ "learning_rate": 0.00011899999999999999,
762
+ "loss": 0.5108,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 1.44,
767
+ "learning_rate": 0.00011999999999999999,
768
+ "loss": 0.5158,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 1.44,
773
+ "eval_loss": 0.4883132874965668,
774
+ "eval_runtime": 35.2497,
775
+ "eval_samples_per_second": 46.213,
776
+ "eval_steps_per_second": 11.575,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 1.45,
781
+ "learning_rate": 0.00012099999999999999,
782
+ "loss": 0.5845,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 1.46,
787
+ "learning_rate": 0.000122,
788
+ "loss": 0.52,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 1.48,
793
+ "learning_rate": 0.00012299999999999998,
794
+ "loss": 0.4885,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 1.49,
799
+ "learning_rate": 0.00012399999999999998,
800
+ "loss": 0.4641,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 1.5,
805
+ "learning_rate": 0.000125,
806
+ "loss": 0.5046,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 1.51,
811
+ "learning_rate": 0.00012599999999999997,
812
+ "loss": 0.5195,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 1.52,
817
+ "learning_rate": 0.000127,
818
+ "loss": 0.512,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 1.54,
823
+ "learning_rate": 0.000128,
824
+ "loss": 0.4458,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 1.55,
829
+ "learning_rate": 0.000129,
830
+ "loss": 0.5912,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 1.56,
835
+ "learning_rate": 0.00013,
836
+ "loss": 0.4515,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 1.57,
841
+ "learning_rate": 0.00013099999999999999,
842
+ "loss": 0.5619,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 1.58,
847
+ "learning_rate": 0.00013199999999999998,
848
+ "loss": 0.7071,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 1.6,
853
+ "learning_rate": 0.000133,
854
+ "loss": 0.5515,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 1.61,
859
+ "learning_rate": 0.00013399999999999998,
860
+ "loss": 0.4863,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 1.62,
865
+ "learning_rate": 0.000135,
866
+ "loss": 0.5102,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 1.63,
871
+ "learning_rate": 0.00013599999999999997,
872
+ "loss": 0.4338,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 1.64,
877
+ "learning_rate": 0.000137,
878
+ "loss": 0.5132,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 1.66,
883
+ "learning_rate": 0.000138,
884
+ "loss": 0.5793,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 1.67,
889
+ "learning_rate": 0.000139,
890
+ "loss": 0.4992,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 1.68,
895
+ "learning_rate": 0.00014,
896
+ "loss": 0.5414,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 1.68,
901
+ "eval_loss": 0.48085713386535645,
902
+ "eval_runtime": 35.2966,
903
+ "eval_samples_per_second": 46.152,
904
+ "eval_steps_per_second": 11.559,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 1.69,
909
+ "learning_rate": 0.00014099999999999998,
910
+ "loss": 0.5303,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 1.7,
915
+ "learning_rate": 0.00014199999999999998,
916
+ "loss": 0.4456,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 1.72,
921
+ "learning_rate": 0.00014299999999999998,
922
+ "loss": 0.5117,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 1.73,
927
+ "learning_rate": 0.00014399999999999998,
928
+ "loss": 0.6139,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 1.74,
933
+ "learning_rate": 0.000145,
934
+ "loss": 0.4346,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 1.75,
939
+ "learning_rate": 0.000146,
940
+ "loss": 0.5148,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 1.76,
945
+ "learning_rate": 0.000147,
946
+ "loss": 0.4928,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 1.78,
951
+ "learning_rate": 0.000148,
952
+ "loss": 0.6429,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 1.79,
957
+ "learning_rate": 0.000149,
958
+ "loss": 0.4687,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 1.8,
963
+ "learning_rate": 0.00015,
964
+ "loss": 0.6071,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 1.81,
969
+ "learning_rate": 0.00015099999999999998,
970
+ "loss": 0.5215,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 1.82,
975
+ "learning_rate": 0.000152,
976
+ "loss": 0.5806,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 1.84,
981
+ "learning_rate": 0.00015299999999999998,
982
+ "loss": 0.5801,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 1.85,
987
+ "learning_rate": 0.00015399999999999998,
988
+ "loss": 0.5104,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 1.86,
993
+ "learning_rate": 0.000155,
994
+ "loss": 0.5002,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 1.87,
999
+ "learning_rate": 0.000156,
1000
+ "loss": 0.508,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 1.88,
1005
+ "learning_rate": 0.000157,
1006
+ "loss": 0.5223,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 1.9,
1011
+ "learning_rate": 0.00015799999999999996,
1012
+ "loss": 0.6085,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 1.91,
1017
+ "learning_rate": 0.000159,
1018
+ "loss": 0.5328,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 1.92,
1023
+ "learning_rate": 0.00015999999999999999,
1024
+ "loss": 0.4715,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 1.92,
1029
+ "eval_loss": 0.47481799125671387,
1030
+ "eval_runtime": 35.1736,
1031
+ "eval_samples_per_second": 46.313,
1032
+ "eval_steps_per_second": 11.6,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 1.93,
1037
+ "learning_rate": 0.00016099999999999998,
1038
+ "loss": 0.4352,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 1.94,
1043
+ "learning_rate": 0.000162,
1044
+ "loss": 0.5532,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 1.96,
1049
+ "learning_rate": 0.00016299999999999998,
1050
+ "loss": 0.4916,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 1.97,
1055
+ "learning_rate": 0.00016399999999999997,
1056
+ "loss": 0.4879,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 1.98,
1061
+ "learning_rate": 0.000165,
1062
+ "loss": 0.5124,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 1.99,
1067
+ "learning_rate": 0.000166,
1068
+ "loss": 0.5515,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 2.0,
1073
+ "learning_rate": 0.00016699999999999997,
1074
+ "loss": 0.5126,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 2.01,
1079
+ "learning_rate": 0.000168,
1080
+ "loss": 0.5941,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 2.03,
1085
+ "learning_rate": 0.000169,
1086
+ "loss": 0.4991,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 2.04,
1091
+ "learning_rate": 0.00016999999999999999,
1092
+ "loss": 0.5356,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 2.05,
1097
+ "learning_rate": 0.00017099999999999998,
1098
+ "loss": 0.4748,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 2.06,
1103
+ "learning_rate": 0.000172,
1104
+ "loss": 0.4136,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 2.07,
1109
+ "learning_rate": 0.00017299999999999998,
1110
+ "loss": 0.3894,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 2.09,
1115
+ "learning_rate": 0.00017399999999999997,
1116
+ "loss": 0.3978,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 2.1,
1121
+ "learning_rate": 0.000175,
1122
+ "loss": 0.4861,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 2.11,
1127
+ "learning_rate": 0.000176,
1128
+ "loss": 0.5061,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 2.12,
1133
+ "learning_rate": 0.00017699999999999997,
1134
+ "loss": 0.4545,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 2.13,
1139
+ "learning_rate": 0.000178,
1140
+ "loss": 0.4327,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 2.15,
1145
+ "learning_rate": 0.000179,
1146
+ "loss": 0.3695,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 2.16,
1151
+ "learning_rate": 0.00017999999999999998,
1152
+ "loss": 0.4037,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 2.16,
1157
+ "eval_loss": 0.48729604482650757,
1158
+ "eval_runtime": 35.2277,
1159
+ "eval_samples_per_second": 46.242,
1160
+ "eval_steps_per_second": 11.582,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 2.17,
1165
+ "learning_rate": 0.000181,
1166
+ "loss": 0.3969,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 2.18,
1171
+ "learning_rate": 0.00018199999999999998,
1172
+ "loss": 0.4611,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 2.19,
1177
+ "learning_rate": 0.00018299999999999998,
1178
+ "loss": 0.3434,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 2.21,
1183
+ "learning_rate": 0.00018399999999999997,
1184
+ "loss": 0.4017,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 2.22,
1189
+ "learning_rate": 0.000185,
1190
+ "loss": 0.3848,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 2.23,
1195
+ "learning_rate": 0.000186,
1196
+ "loss": 0.3548,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 2.24,
1201
+ "learning_rate": 0.00018699999999999996,
1202
+ "loss": 0.446,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 2.25,
1207
+ "learning_rate": 0.000188,
1208
+ "loss": 0.3788,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 2.27,
1213
+ "learning_rate": 0.00018899999999999999,
1214
+ "loss": 0.4564,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 2.28,
1219
+ "learning_rate": 0.00018999999999999998,
1220
+ "loss": 0.3292,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 2.29,
1225
+ "learning_rate": 0.000191,
1226
+ "loss": 0.4338,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 2.3,
1231
+ "learning_rate": 0.00019199999999999998,
1232
+ "loss": 0.4,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 2.31,
1237
+ "learning_rate": 0.00019299999999999997,
1238
+ "loss": 0.3872,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 2.33,
1243
+ "learning_rate": 0.00019399999999999997,
1244
+ "loss": 0.4046,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 2.34,
1249
+ "learning_rate": 0.000195,
1250
+ "loss": 0.4431,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 2.35,
1255
+ "learning_rate": 0.00019599999999999997,
1256
+ "loss": 0.4568,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 2.36,
1261
+ "learning_rate": 0.00019699999999999996,
1262
+ "loss": 0.324,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 2.37,
1267
+ "learning_rate": 0.000198,
1268
+ "loss": 0.3629,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 2.39,
1273
+ "learning_rate": 0.00019899999999999999,
1274
+ "loss": 0.3195,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 2.4,
1279
+ "learning_rate": 0.00019999999999999998,
1280
+ "loss": 0.4213,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 2.4,
1285
+ "eval_loss": 0.5193601846694946,
1286
+ "eval_runtime": 35.074,
1287
+ "eval_samples_per_second": 46.445,
1288
+ "eval_steps_per_second": 11.633,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 2.41,
1293
+ "learning_rate": 0.000201,
1294
+ "loss": 0.3644,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 2.42,
1299
+ "learning_rate": 0.00020199999999999998,
1300
+ "loss": 0.3512,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 2.43,
1305
+ "learning_rate": 0.00020299999999999997,
1306
+ "loss": 0.3081,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 2.45,
1311
+ "learning_rate": 0.000204,
1312
+ "loss": 0.4205,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 2.46,
1317
+ "learning_rate": 0.000205,
1318
+ "loss": 0.4365,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 2.47,
1323
+ "learning_rate": 0.00020599999999999997,
1324
+ "loss": 0.3399,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 2.48,
1329
+ "learning_rate": 0.00020699999999999996,
1330
+ "loss": 0.3069,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 2.49,
1335
+ "learning_rate": 0.000208,
1336
+ "loss": 0.3603,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 2.51,
1341
+ "learning_rate": 0.00020899999999999998,
1342
+ "loss": 0.3856,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 2.52,
1347
+ "learning_rate": 0.00020999999999999998,
1348
+ "loss": 0.3315,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 2.53,
1353
+ "learning_rate": 0.00021099999999999998,
1354
+ "loss": 0.3774,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 2.54,
1359
+ "learning_rate": 0.00021199999999999998,
1360
+ "loss": 0.3271,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 2.55,
1365
+ "learning_rate": 0.00021299999999999997,
1366
+ "loss": 0.3988,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 2.57,
1371
+ "learning_rate": 0.000214,
1372
+ "loss": 0.3555,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 2.58,
1377
+ "learning_rate": 0.000215,
1378
+ "loss": 0.4195,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 2.59,
1383
+ "learning_rate": 0.00021599999999999996,
1384
+ "loss": 0.5629,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 2.6,
1389
+ "learning_rate": 0.000217,
1390
+ "loss": 0.3774,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 2.61,
1395
+ "learning_rate": 0.00021799999999999999,
1396
+ "loss": 0.3255,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 2.63,
1401
+ "learning_rate": 0.00021899999999999998,
1402
+ "loss": 0.2932,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 2.64,
1407
+ "learning_rate": 0.00021999999999999995,
1408
+ "loss": 0.2988,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 2.64,
1413
+ "eval_loss": 0.6278083920478821,
1414
+ "eval_runtime": 35.4299,
1415
+ "eval_samples_per_second": 45.978,
1416
+ "eval_steps_per_second": 11.516,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 2.65,
1421
+ "learning_rate": 0.00022099999999999998,
1422
+ "loss": 0.4582,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 2.66,
1427
+ "learning_rate": 0.00022199999999999998,
1428
+ "loss": 0.361,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 2.67,
1433
+ "learning_rate": 0.00022299999999999997,
1434
+ "loss": 0.3557,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 2.69,
1439
+ "learning_rate": 0.000224,
1440
+ "loss": 0.432,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 2.7,
1445
+ "learning_rate": 0.000225,
1446
+ "loss": 0.2846,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 2.71,
1451
+ "learning_rate": 0.00022599999999999996,
1452
+ "loss": 0.3854,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 2.72,
1457
+ "learning_rate": 0.000227,
1458
+ "loss": 0.3946,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 2.73,
1463
+ "learning_rate": 0.00022799999999999999,
1464
+ "loss": 0.3812,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 2.75,
1469
+ "learning_rate": 0.00022899999999999998,
1470
+ "loss": 0.348,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 2.76,
1475
+ "learning_rate": 0.00023,
1476
+ "loss": 0.3094,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 2.77,
1481
+ "learning_rate": 0.00023099999999999998,
1482
+ "loss": 0.4102,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 2.78,
1487
+ "learning_rate": 0.00023199999999999997,
1488
+ "loss": 0.4329,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 2.79,
1493
+ "learning_rate": 0.00023299999999999997,
1494
+ "loss": 0.394,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 2.81,
1499
+ "learning_rate": 0.000234,
1500
+ "loss": 0.378,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 2.82,
1505
+ "learning_rate": 0.00023499999999999997,
1506
+ "loss": 0.3824,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 2.83,
1511
+ "learning_rate": 0.00023599999999999996,
1512
+ "loss": 0.4943,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 2.84,
1517
+ "learning_rate": 0.000237,
1518
+ "loss": 0.3159,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 2.85,
1523
+ "learning_rate": 0.00023799999999999998,
1524
+ "loss": 0.4219,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 2.87,
1529
+ "learning_rate": 0.00023899999999999998,
1530
+ "loss": 0.2945,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 2.88,
1535
+ "learning_rate": 0.00023999999999999998,
1536
+ "loss": 0.3477,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 2.88,
1541
+ "eval_loss": 0.5839571952819824,
1542
+ "eval_runtime": 35.1498,
1543
+ "eval_samples_per_second": 46.344,
1544
+ "eval_steps_per_second": 11.607,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 2.89,
1549
+ "learning_rate": 0.00024099999999999998,
1550
+ "loss": 0.4324,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 2.9,
1555
+ "learning_rate": 0.00024199999999999997,
1556
+ "loss": 0.3769,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 2.91,
1561
+ "learning_rate": 0.000243,
1562
+ "loss": 0.3396,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 2.93,
1567
+ "learning_rate": 0.000244,
1568
+ "loss": 0.3101,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 2.94,
1573
+ "learning_rate": 0.000245,
1574
+ "loss": 0.332,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 2.95,
1579
+ "learning_rate": 0.00024599999999999996,
1580
+ "loss": 0.3818,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 2.96,
1585
+ "learning_rate": 0.000247,
1586
+ "loss": 0.3042,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 2.97,
1591
+ "learning_rate": 0.00024799999999999996,
1592
+ "loss": 0.37,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 2.99,
1597
+ "learning_rate": 0.000249,
1598
+ "loss": 0.3134,
1599
+ "step": 249
1600
+ }
1601
+ ],
1602
+ "logging_steps": 1,
1603
+ "max_steps": 249,
1604
+ "num_train_epochs": 3,
1605
+ "save_steps": 500,
1606
+ "total_flos": 2.850548033903395e+18,
1607
+ "trial_name": null,
1608
+ "trial_params": null
1609
+ }
checkpoint-249/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e3830cab5058e45763dede36e071a76743149bc2f5b60978574c35a5bc13fec
3
+ size 4475
checkpoint-83/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-83/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 32,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 64,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "k_proj",
21
+ "up_proj",
22
+ "down_proj",
23
+ "gate_proj",
24
+ "q_proj",
25
+ "v_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-83/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c87317f2c199b69b914797f2dec5046c4e8cf457dfb52d72e562a0b3fa324459
3
+ size 671250189
checkpoint-83/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:254249817c2f47ac00e60954cb7806bb0bfc9b99fac554194b9f60ceea3333f3
3
+ size 336724767
checkpoint-83/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd1fdc559fb988701ded7585ffdaae2aced0b8aa9000a73f3da65fabea29f82
3
+ size 14575
checkpoint-83/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:041034fe4504aeeddd3d4ceabab995d7cb94c8766e74825ab0b900bb4e5b23a2
3
+ size 627
checkpoint-83/trainer_state.json ADDED
@@ -0,0 +1,549 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9955022488755623,
5
+ "eval_steps": 20,
6
+ "global_step": 83,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 1e-06,
14
+ "loss": 2.4137,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.02,
19
+ "learning_rate": 2e-06,
20
+ "loss": 2.5757,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 2.9999999999999997e-06,
26
+ "loss": 2.2254,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4e-06,
32
+ "loss": 2.3859,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.06,
37
+ "learning_rate": 4.9999999999999996e-06,
38
+ "loss": 2.2279,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.07,
43
+ "learning_rate": 5.999999999999999e-06,
44
+ "loss": 2.4677,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.08,
49
+ "learning_rate": 7e-06,
50
+ "loss": 2.3097,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.1,
55
+ "learning_rate": 8e-06,
56
+ "loss": 2.1753,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.11,
61
+ "learning_rate": 8.999999999999999e-06,
62
+ "loss": 1.9567,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.12,
67
+ "learning_rate": 9.999999999999999e-06,
68
+ "loss": 1.4897,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.13,
73
+ "learning_rate": 1.1e-05,
74
+ "loss": 1.3339,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.14,
79
+ "learning_rate": 1.1999999999999999e-05,
80
+ "loss": 1.2799,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.16,
85
+ "learning_rate": 1.3e-05,
86
+ "loss": 0.941,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.17,
91
+ "learning_rate": 1.4e-05,
92
+ "loss": 0.9046,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.18,
97
+ "learning_rate": 1.4999999999999999e-05,
98
+ "loss": 0.8112,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.19,
103
+ "learning_rate": 1.6e-05,
104
+ "loss": 0.8297,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.2,
109
+ "learning_rate": 1.6999999999999996e-05,
110
+ "loss": 0.7657,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.22,
115
+ "learning_rate": 1.7999999999999997e-05,
116
+ "loss": 0.8527,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.23,
121
+ "learning_rate": 1.9e-05,
122
+ "loss": 0.8213,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.24,
127
+ "learning_rate": 1.9999999999999998e-05,
128
+ "loss": 0.767,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.24,
133
+ "eval_loss": 0.6342860460281372,
134
+ "eval_runtime": 35.077,
135
+ "eval_samples_per_second": 46.441,
136
+ "eval_steps_per_second": 11.632,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.25,
141
+ "learning_rate": 2.1e-05,
142
+ "loss": 0.8794,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.26,
147
+ "learning_rate": 2.2e-05,
148
+ "loss": 0.7471,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.28,
153
+ "learning_rate": 2.2999999999999997e-05,
154
+ "loss": 0.8795,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.29,
159
+ "learning_rate": 2.3999999999999997e-05,
160
+ "loss": 0.7741,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.3,
165
+ "learning_rate": 2.4999999999999998e-05,
166
+ "loss": 0.774,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.31,
171
+ "learning_rate": 2.6e-05,
172
+ "loss": 0.7771,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.32,
177
+ "learning_rate": 2.6999999999999996e-05,
178
+ "loss": 0.8314,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.34,
183
+ "learning_rate": 2.8e-05,
184
+ "loss": 0.6423,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.35,
189
+ "learning_rate": 2.8999999999999997e-05,
190
+ "loss": 0.8044,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.36,
195
+ "learning_rate": 2.9999999999999997e-05,
196
+ "loss": 0.6982,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.37,
201
+ "learning_rate": 3.0999999999999995e-05,
202
+ "loss": 0.7646,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.38,
207
+ "learning_rate": 3.2e-05,
208
+ "loss": 0.7309,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.4,
213
+ "learning_rate": 3.2999999999999996e-05,
214
+ "loss": 0.7731,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.41,
219
+ "learning_rate": 3.399999999999999e-05,
220
+ "loss": 0.7677,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.42,
225
+ "learning_rate": 3.5e-05,
226
+ "loss": 0.6812,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.43,
231
+ "learning_rate": 3.5999999999999994e-05,
232
+ "loss": 0.7012,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.44,
237
+ "learning_rate": 3.7e-05,
238
+ "loss": 0.743,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.46,
243
+ "learning_rate": 3.8e-05,
244
+ "loss": 0.7018,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.47,
249
+ "learning_rate": 3.9e-05,
250
+ "loss": 0.6283,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.48,
255
+ "learning_rate": 3.9999999999999996e-05,
256
+ "loss": 0.6849,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.48,
261
+ "eval_loss": 0.5668678283691406,
262
+ "eval_runtime": 35.2083,
263
+ "eval_samples_per_second": 46.268,
264
+ "eval_steps_per_second": 11.588,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.49,
269
+ "learning_rate": 4.0999999999999994e-05,
270
+ "loss": 0.674,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.5,
275
+ "learning_rate": 4.2e-05,
276
+ "loss": 0.6649,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.52,
281
+ "learning_rate": 4.3e-05,
282
+ "loss": 0.6876,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.53,
287
+ "learning_rate": 4.4e-05,
288
+ "loss": 0.6865,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.54,
293
+ "learning_rate": 4.4999999999999996e-05,
294
+ "loss": 0.7319,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.55,
299
+ "learning_rate": 4.599999999999999e-05,
300
+ "loss": 0.6688,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.56,
305
+ "learning_rate": 4.7e-05,
306
+ "loss": 0.737,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.58,
311
+ "learning_rate": 4.7999999999999994e-05,
312
+ "loss": 0.6599,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.59,
317
+ "learning_rate": 4.899999999999999e-05,
318
+ "loss": 0.6748,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.6,
323
+ "learning_rate": 4.9999999999999996e-05,
324
+ "loss": 0.7997,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.61,
329
+ "learning_rate": 5.1e-05,
330
+ "loss": 0.6429,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.62,
335
+ "learning_rate": 5.2e-05,
336
+ "loss": 0.6107,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.64,
341
+ "learning_rate": 5.2999999999999994e-05,
342
+ "loss": 0.7678,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.65,
347
+ "learning_rate": 5.399999999999999e-05,
348
+ "loss": 0.686,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.66,
353
+ "learning_rate": 5.499999999999999e-05,
354
+ "loss": 0.6825,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.67,
359
+ "learning_rate": 5.6e-05,
360
+ "loss": 0.5791,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.68,
365
+ "learning_rate": 5.6999999999999996e-05,
366
+ "loss": 0.7382,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.7,
371
+ "learning_rate": 5.7999999999999994e-05,
372
+ "loss": 0.6888,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.71,
377
+ "learning_rate": 5.899999999999999e-05,
378
+ "loss": 0.6067,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.72,
383
+ "learning_rate": 5.9999999999999995e-05,
384
+ "loss": 0.6761,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.72,
389
+ "eval_loss": 0.5247214436531067,
390
+ "eval_runtime": 35.3754,
391
+ "eval_samples_per_second": 46.049,
392
+ "eval_steps_per_second": 11.533,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.73,
397
+ "learning_rate": 6.1e-05,
398
+ "loss": 0.6388,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.74,
403
+ "learning_rate": 6.199999999999999e-05,
404
+ "loss": 0.5719,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.76,
409
+ "learning_rate": 6.299999999999999e-05,
410
+ "loss": 0.6878,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.77,
415
+ "learning_rate": 6.4e-05,
416
+ "loss": 0.6075,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.78,
421
+ "learning_rate": 6.5e-05,
422
+ "loss": 0.583,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.79,
427
+ "learning_rate": 6.599999999999999e-05,
428
+ "loss": 0.6215,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.8,
433
+ "learning_rate": 6.699999999999999e-05,
434
+ "loss": 0.6645,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.82,
439
+ "learning_rate": 6.799999999999999e-05,
440
+ "loss": 0.6785,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.83,
445
+ "learning_rate": 6.9e-05,
446
+ "loss": 0.5568,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.84,
451
+ "learning_rate": 7e-05,
452
+ "loss": 0.5797,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.85,
457
+ "learning_rate": 7.099999999999999e-05,
458
+ "loss": 0.6467,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.86,
463
+ "learning_rate": 7.199999999999999e-05,
464
+ "loss": 0.5555,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.88,
469
+ "learning_rate": 7.3e-05,
470
+ "loss": 0.6119,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.89,
475
+ "learning_rate": 7.4e-05,
476
+ "loss": 0.6903,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.9,
481
+ "learning_rate": 7.5e-05,
482
+ "loss": 0.6461,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.91,
487
+ "learning_rate": 7.6e-05,
488
+ "loss": 0.5789,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.92,
493
+ "learning_rate": 7.699999999999999e-05,
494
+ "loss": 0.5349,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.94,
499
+ "learning_rate": 7.8e-05,
500
+ "loss": 0.5261,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.95,
505
+ "learning_rate": 7.899999999999998e-05,
506
+ "loss": 0.6659,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.96,
511
+ "learning_rate": 7.999999999999999e-05,
512
+ "loss": 0.5534,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.96,
517
+ "eval_loss": 0.5044009685516357,
518
+ "eval_runtime": 35.1756,
519
+ "eval_samples_per_second": 46.31,
520
+ "eval_steps_per_second": 11.599,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.97,
525
+ "learning_rate": 8.1e-05,
526
+ "loss": 0.5247,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.98,
531
+ "learning_rate": 8.199999999999999e-05,
532
+ "loss": 0.6016,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 1.0,
537
+ "learning_rate": 8.3e-05,
538
+ "loss": 0.642,
539
+ "step": 83
540
+ }
541
+ ],
542
+ "logging_steps": 1,
543
+ "max_steps": 249,
544
+ "num_train_epochs": 3,
545
+ "save_steps": 500,
546
+ "total_flos": 9.544756719947612e+17,
547
+ "trial_name": null,
548
+ "trial_params": null
549
+ }
checkpoint-83/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e3830cab5058e45763dede36e071a76743149bc2f5b60978574c35a5bc13fec
3
+ size 4475
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 4096,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 14336,
12
+ "max_position_embeddings": 32768,
13
+ "model_type": "mistral",
14
+ "num_attention_heads": 32,
15
+ "num_hidden_layers": 32,
16
+ "num_key_value_heads": 8,
17
+ "quantization_config": {
18
+ "bnb_4bit_compute_dtype": "bfloat16",
19
+ "bnb_4bit_quant_type": "nf4",
20
+ "bnb_4bit_use_double_quant": true,
21
+ "llm_int8_enable_fp32_cpu_offload": false,
22
+ "llm_int8_has_fp16_weight": false,
23
+ "llm_int8_skip_modules": null,
24
+ "llm_int8_threshold": 6.0,
25
+ "load_in_4bit": true,
26
+ "load_in_8bit": false,
27
+ "quant_method": "bitsandbytes"
28
+ },
29
+ "rms_norm_eps": 1e-05,
30
+ "rope_theta": 10000.0,
31
+ "sliding_window": 4096,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.34.1",
35
+ "use_cache": false,
36
+ "vocab_size": 32000
37
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "trust_remote_code": false,
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true,
43
+ "use_fast": true
44
+ }