onuralp commited on
Commit
482e863
1 Parent(s): 10967c8

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: qlora-out
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
+ # qlora-out
16
+
17
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.5631
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0004
39
+ - train_batch_size: 2
40
+ - eval_batch_size: 2
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 8
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - lr_scheduler_warmup_steps: 300
47
+ - num_epochs: 3
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 0.8335 | 0.06 | 20 | 0.6429 |
54
+ | 0.6725 | 0.12 | 40 | 0.5888 |
55
+ | 0.5927 | 0.18 | 60 | 0.5603 |
56
+ | 0.5847 | 0.24 | 80 | 0.5362 |
57
+ | 0.5552 | 0.3 | 100 | 0.5256 |
58
+ | 0.5511 | 0.36 | 120 | 0.5243 |
59
+ | 0.5466 | 0.42 | 140 | 0.5102 |
60
+ | 0.4395 | 0.48 | 160 | 0.5065 |
61
+ | 0.6854 | 0.54 | 180 | 0.4971 |
62
+ | 0.7326 | 0.6 | 200 | 0.5150 |
63
+ | 0.8204 | 0.66 | 220 | 0.5008 |
64
+ | 0.6009 | 0.72 | 240 | 0.4972 |
65
+ | 0.4471 | 0.78 | 260 | 0.4944 |
66
+ | 0.5934 | 0.84 | 280 | 0.5146 |
67
+ | 0.6574 | 0.9 | 300 | 0.5057 |
68
+ | 0.4566 | 0.96 | 320 | 0.4880 |
69
+ | 0.6119 | 1.02 | 340 | 0.5442 |
70
+ | 0.3779 | 1.08 | 360 | 0.5540 |
71
+ | 0.4431 | 1.14 | 380 | 0.5375 |
72
+ | 0.38 | 1.2 | 400 | 0.5541 |
73
+ | 0.4542 | 1.26 | 420 | 0.5359 |
74
+ | 0.5392 | 1.32 | 440 | 0.5394 |
75
+ | 0.2573 | 1.38 | 460 | 0.5318 |
76
+ | 0.5441 | 1.44 | 480 | 0.5201 |
77
+ | 0.3758 | 1.5 | 500 | 0.5147 |
78
+ | 0.4403 | 1.56 | 520 | 0.5134 |
79
+ | 0.3308 | 1.62 | 540 | 0.5289 |
80
+ | 0.4604 | 1.68 | 560 | 0.5205 |
81
+ | 0.4479 | 1.74 | 580 | 0.5340 |
82
+ | 0.521 | 1.8 | 600 | 0.5094 |
83
+ | 0.32 | 1.86 | 620 | 0.4995 |
84
+ | 0.3984 | 1.92 | 640 | 0.4878 |
85
+ | 0.3799 | 1.98 | 660 | 0.4826 |
86
+ | 0.1484 | 2.04 | 680 | 0.7261 |
87
+ | 0.3305 | 2.1 | 700 | 0.6187 |
88
+ | 0.1477 | 2.16 | 720 | 0.5499 |
89
+ | 0.176 | 2.22 | 740 | 0.5796 |
90
+ | 0.1892 | 2.28 | 760 | 0.5717 |
91
+ | 0.1921 | 2.34 | 780 | 0.5416 |
92
+ | 0.1366 | 2.4 | 800 | 0.5866 |
93
+ | 0.1726 | 2.46 | 820 | 0.5562 |
94
+ | 0.1264 | 2.51 | 840 | 0.5621 |
95
+ | 0.2054 | 2.57 | 860 | 0.5678 |
96
+ | 0.1722 | 2.63 | 880 | 0.5573 |
97
+ | 0.2399 | 2.69 | 900 | 0.5553 |
98
+ | 0.229 | 2.75 | 920 | 0.5565 |
99
+ | 0.1876 | 2.81 | 940 | 0.5609 |
100
+ | 0.2281 | 2.87 | 960 | 0.5633 |
101
+ | 0.1727 | 2.93 | 980 | 0.5645 |
102
+ | 0.3536 | 2.99 | 1000 | 0.5631 |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.34.1
108
+ - Pytorch 2.0.1+cu118
109
+ - Datasets 2.14.6
110
+ - Tokenizers 0.14.1
adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "v_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "down_proj",
24
+ "gate_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:568c2437eeacd3b0544fb93db03ca0342cadf1f2adfd24db27db237d4430ace9
3
+ size 335705741
checkpoint-1002/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-1002/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "v_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "down_proj",
24
+ "gate_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-1002/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:568c2437eeacd3b0544fb93db03ca0342cadf1f2adfd24db27db237d4430ace9
3
+ size 335705741
checkpoint-1002/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b6d21da256d32fa5a4667d275880556615fedea0d3a40536f102ce1d2c3fc0e
3
+ size 671364101
checkpoint-1002/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6132062d501391cea8a366ab4456cfc242c24b5718df54b54e06fc9476b3306b
3
+ size 14575
checkpoint-1002/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9918e5a7f1925ff5913d17bc9cb764150357ed8088ad5535a840dab9a4d9bca6
3
+ size 627
checkpoint-1002/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1002/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:437823b67a8e71dde1f898ebf1534afc55a51ee86d8735c8e1f03954c766c4a4
3
+ size 4475
checkpoint-334/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-334/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "v_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "down_proj",
24
+ "gate_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-334/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a13aee66cb707e98bf424cffe419b5a6cf3268470a2904fc69fef7194199842a
3
+ size 335705741
checkpoint-334/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ea999f025b858ad1c164f44dd4b7b06eb1495d7b20880f2ce2909e60375b5a
3
+ size 671364101
checkpoint-334/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3f608126d866e659110eecf5c72f87a1d11d5721d71eff2f58e3314c16dd243
3
+ size 14575
checkpoint-334/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51af7900d77cd5a39cb09610802d30e0086a6341b6efebecd39a3c9b7b17be41
3
+ size 627
checkpoint-334/trainer_state.json ADDED
@@ -0,0 +1,2151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 20,
6
+ "global_step": 334,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.3333333333333334e-06,
14
+ "loss": 2.8321,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2.666666666666667e-06,
20
+ "loss": 3.0972,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 4.000000000000001e-06,
26
+ "loss": 2.6421,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 5.333333333333334e-06,
32
+ "loss": 2.3812,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 6.666666666666667e-06,
38
+ "loss": 2.6574,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 8.000000000000001e-06,
44
+ "loss": 2.407,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 9.333333333333334e-06,
50
+ "loss": 3.2132,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1.0666666666666667e-05,
56
+ "loss": 2.2604,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 1.2e-05,
62
+ "loss": 1.905,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 1.3333333333333333e-05,
68
+ "loss": 2.8917,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 1.4666666666666668e-05,
74
+ "loss": 1.7831,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 1.6000000000000003e-05,
80
+ "loss": 1.372,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 1.7333333333333336e-05,
86
+ "loss": 1.7615,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 1.866666666666667e-05,
92
+ "loss": 1.2265,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 2e-05,
98
+ "loss": 0.7593,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 2.1333333333333335e-05,
104
+ "loss": 0.8485,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 2.2666666666666668e-05,
110
+ "loss": 0.7462,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 2.4e-05,
116
+ "loss": 0.7687,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 2.5333333333333337e-05,
122
+ "loss": 0.66,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 2.6666666666666667e-05,
128
+ "loss": 0.8335,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "eval_loss": 0.6428894400596619,
134
+ "eval_runtime": 19.6908,
135
+ "eval_samples_per_second": 82.729,
136
+ "eval_steps_per_second": 41.39,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.06,
141
+ "learning_rate": 2.8000000000000003e-05,
142
+ "loss": 0.8233,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.07,
147
+ "learning_rate": 2.9333333333333336e-05,
148
+ "loss": 0.7742,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.07,
153
+ "learning_rate": 3.066666666666667e-05,
154
+ "loss": 0.8104,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.07,
159
+ "learning_rate": 3.2000000000000005e-05,
160
+ "loss": 0.6492,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.07,
165
+ "learning_rate": 3.3333333333333335e-05,
166
+ "loss": 0.698,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.08,
171
+ "learning_rate": 3.466666666666667e-05,
172
+ "loss": 0.8286,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.08,
177
+ "learning_rate": 3.6e-05,
178
+ "loss": 0.9258,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.08,
183
+ "learning_rate": 3.733333333333334e-05,
184
+ "loss": 0.6863,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.09,
189
+ "learning_rate": 3.866666666666667e-05,
190
+ "loss": 0.6822,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.09,
195
+ "learning_rate": 4e-05,
196
+ "loss": 0.7762,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.09,
201
+ "learning_rate": 4.133333333333333e-05,
202
+ "loss": 0.7259,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.1,
207
+ "learning_rate": 4.266666666666667e-05,
208
+ "loss": 0.6832,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.1,
213
+ "learning_rate": 4.4000000000000006e-05,
214
+ "loss": 0.7542,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.1,
219
+ "learning_rate": 4.5333333333333335e-05,
220
+ "loss": 0.742,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.1,
225
+ "learning_rate": 4.666666666666667e-05,
226
+ "loss": 0.7404,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.11,
231
+ "learning_rate": 4.8e-05,
232
+ "loss": 0.7476,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.11,
237
+ "learning_rate": 4.933333333333334e-05,
238
+ "loss": 0.728,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.11,
243
+ "learning_rate": 5.0666666666666674e-05,
244
+ "loss": 0.7258,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.12,
249
+ "learning_rate": 5.2000000000000004e-05,
250
+ "loss": 0.5863,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.12,
255
+ "learning_rate": 5.333333333333333e-05,
256
+ "loss": 0.6725,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.12,
261
+ "eval_loss": 0.5888345837593079,
262
+ "eval_runtime": 19.6842,
263
+ "eval_samples_per_second": 82.757,
264
+ "eval_steps_per_second": 41.404,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.12,
269
+ "learning_rate": 5.466666666666666e-05,
270
+ "loss": 0.672,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.13,
275
+ "learning_rate": 5.6000000000000006e-05,
276
+ "loss": 0.656,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.13,
281
+ "learning_rate": 5.7333333333333336e-05,
282
+ "loss": 0.7206,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.13,
287
+ "learning_rate": 5.866666666666667e-05,
288
+ "loss": 0.7592,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.13,
293
+ "learning_rate": 6e-05,
294
+ "loss": 0.7326,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.14,
299
+ "learning_rate": 6.133333333333334e-05,
300
+ "loss": 0.7992,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.14,
305
+ "learning_rate": 6.266666666666667e-05,
306
+ "loss": 0.5875,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.14,
311
+ "learning_rate": 6.400000000000001e-05,
312
+ "loss": 0.6702,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.15,
317
+ "learning_rate": 6.533333333333334e-05,
318
+ "loss": 0.7486,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.15,
323
+ "learning_rate": 6.666666666666667e-05,
324
+ "loss": 0.5083,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.15,
329
+ "learning_rate": 6.800000000000001e-05,
330
+ "loss": 0.7208,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.16,
335
+ "learning_rate": 6.933333333333334e-05,
336
+ "loss": 0.8246,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.16,
341
+ "learning_rate": 7.066666666666667e-05,
342
+ "loss": 0.7291,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.16,
347
+ "learning_rate": 7.2e-05,
348
+ "loss": 0.6183,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.16,
353
+ "learning_rate": 7.333333333333333e-05,
354
+ "loss": 0.7643,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.17,
359
+ "learning_rate": 7.466666666666667e-05,
360
+ "loss": 0.6758,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.17,
365
+ "learning_rate": 7.6e-05,
366
+ "loss": 0.5394,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.17,
371
+ "learning_rate": 7.733333333333333e-05,
372
+ "loss": 0.7475,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.18,
377
+ "learning_rate": 7.866666666666666e-05,
378
+ "loss": 0.5581,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.18,
383
+ "learning_rate": 8e-05,
384
+ "loss": 0.5927,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.18,
389
+ "eval_loss": 0.5602975487709045,
390
+ "eval_runtime": 19.6961,
391
+ "eval_samples_per_second": 82.707,
392
+ "eval_steps_per_second": 41.379,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.18,
397
+ "learning_rate": 8.133333333333334e-05,
398
+ "loss": 0.6323,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.19,
403
+ "learning_rate": 8.266666666666667e-05,
404
+ "loss": 0.7222,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.19,
409
+ "learning_rate": 8.4e-05,
410
+ "loss": 0.6957,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.19,
415
+ "learning_rate": 8.533333333333334e-05,
416
+ "loss": 0.4861,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.19,
421
+ "learning_rate": 8.666666666666667e-05,
422
+ "loss": 0.635,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.2,
427
+ "learning_rate": 8.800000000000001e-05,
428
+ "loss": 0.6229,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.2,
433
+ "learning_rate": 8.933333333333334e-05,
434
+ "loss": 0.5476,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.2,
439
+ "learning_rate": 9.066666666666667e-05,
440
+ "loss": 0.544,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.21,
445
+ "learning_rate": 9.200000000000001e-05,
446
+ "loss": 0.6609,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.21,
451
+ "learning_rate": 9.333333333333334e-05,
452
+ "loss": 0.803,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.21,
457
+ "learning_rate": 9.466666666666667e-05,
458
+ "loss": 0.6424,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.22,
463
+ "learning_rate": 9.6e-05,
464
+ "loss": 0.5638,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.22,
469
+ "learning_rate": 9.733333333333335e-05,
470
+ "loss": 0.6053,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.22,
475
+ "learning_rate": 9.866666666666668e-05,
476
+ "loss": 0.4952,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.22,
481
+ "learning_rate": 0.0001,
482
+ "loss": 0.7466,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.23,
487
+ "learning_rate": 0.00010133333333333335,
488
+ "loss": 0.5158,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.23,
493
+ "learning_rate": 0.00010266666666666666,
494
+ "loss": 0.7381,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.23,
499
+ "learning_rate": 0.00010400000000000001,
500
+ "loss": 0.5236,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.24,
505
+ "learning_rate": 0.00010533333333333332,
506
+ "loss": 0.5489,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.24,
511
+ "learning_rate": 0.00010666666666666667,
512
+ "loss": 0.5847,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.24,
517
+ "eval_loss": 0.5362095832824707,
518
+ "eval_runtime": 19.6974,
519
+ "eval_samples_per_second": 82.701,
520
+ "eval_steps_per_second": 41.376,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.24,
525
+ "learning_rate": 0.00010800000000000001,
526
+ "loss": 0.5874,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.25,
531
+ "learning_rate": 0.00010933333333333333,
532
+ "loss": 0.5987,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.25,
537
+ "learning_rate": 0.00011066666666666667,
538
+ "loss": 0.8255,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.25,
543
+ "learning_rate": 0.00011200000000000001,
544
+ "loss": 0.6952,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.25,
549
+ "learning_rate": 0.00011333333333333334,
550
+ "loss": 0.5358,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.26,
555
+ "learning_rate": 0.00011466666666666667,
556
+ "loss": 0.5875,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.26,
561
+ "learning_rate": 0.000116,
562
+ "loss": 0.5211,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.26,
567
+ "learning_rate": 0.00011733333333333334,
568
+ "loss": 0.604,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.27,
573
+ "learning_rate": 0.00011866666666666669,
574
+ "loss": 0.7087,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.27,
579
+ "learning_rate": 0.00012,
580
+ "loss": 0.627,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.27,
585
+ "learning_rate": 0.00012133333333333335,
586
+ "loss": 0.8013,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.28,
591
+ "learning_rate": 0.00012266666666666668,
592
+ "loss": 0.7636,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.28,
597
+ "learning_rate": 0.000124,
598
+ "loss": 0.5857,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.28,
603
+ "learning_rate": 0.00012533333333333334,
604
+ "loss": 0.5942,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.28,
609
+ "learning_rate": 0.00012666666666666666,
610
+ "loss": 0.6063,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.29,
615
+ "learning_rate": 0.00012800000000000002,
616
+ "loss": 0.6896,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.29,
621
+ "learning_rate": 0.00012933333333333332,
622
+ "loss": 0.47,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.29,
627
+ "learning_rate": 0.00013066666666666668,
628
+ "loss": 0.6455,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.3,
633
+ "learning_rate": 0.000132,
634
+ "loss": 0.5724,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.3,
639
+ "learning_rate": 0.00013333333333333334,
640
+ "loss": 0.5552,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.3,
645
+ "eval_loss": 0.525646984577179,
646
+ "eval_runtime": 19.6963,
647
+ "eval_samples_per_second": 82.706,
648
+ "eval_steps_per_second": 41.378,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.3,
653
+ "learning_rate": 0.00013466666666666667,
654
+ "loss": 0.6286,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.31,
659
+ "learning_rate": 0.00013600000000000003,
660
+ "loss": 0.5828,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.31,
665
+ "learning_rate": 0.00013733333333333333,
666
+ "loss": 0.6024,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.31,
671
+ "learning_rate": 0.00013866666666666669,
672
+ "loss": 0.6578,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.31,
677
+ "learning_rate": 0.00014,
678
+ "loss": 0.5617,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.32,
683
+ "learning_rate": 0.00014133333333333334,
684
+ "loss": 0.6382,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.32,
689
+ "learning_rate": 0.00014266666666666667,
690
+ "loss": 0.6114,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.32,
695
+ "learning_rate": 0.000144,
696
+ "loss": 0.6915,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.33,
701
+ "learning_rate": 0.00014533333333333333,
702
+ "loss": 0.5593,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.33,
707
+ "learning_rate": 0.00014666666666666666,
708
+ "loss": 0.6069,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.33,
713
+ "learning_rate": 0.000148,
714
+ "loss": 0.4814,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.34,
719
+ "learning_rate": 0.00014933333333333335,
720
+ "loss": 0.349,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.34,
725
+ "learning_rate": 0.00015066666666666668,
726
+ "loss": 0.4876,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.34,
731
+ "learning_rate": 0.000152,
732
+ "loss": 0.7599,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.34,
737
+ "learning_rate": 0.00015333333333333334,
738
+ "loss": 0.5611,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.35,
743
+ "learning_rate": 0.00015466666666666667,
744
+ "loss": 0.4964,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.35,
749
+ "learning_rate": 0.00015600000000000002,
750
+ "loss": 0.6322,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.35,
755
+ "learning_rate": 0.00015733333333333333,
756
+ "loss": 0.6048,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.36,
761
+ "learning_rate": 0.00015866666666666668,
762
+ "loss": 0.4281,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.36,
767
+ "learning_rate": 0.00016,
768
+ "loss": 0.5511,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.36,
773
+ "eval_loss": 0.5242847800254822,
774
+ "eval_runtime": 19.6845,
775
+ "eval_samples_per_second": 82.756,
776
+ "eval_steps_per_second": 41.403,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.36,
781
+ "learning_rate": 0.00016133333333333334,
782
+ "loss": 0.3825,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.37,
787
+ "learning_rate": 0.00016266666666666667,
788
+ "loss": 0.5735,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.37,
793
+ "learning_rate": 0.000164,
794
+ "loss": 0.5507,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.37,
799
+ "learning_rate": 0.00016533333333333333,
800
+ "loss": 0.6579,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.37,
805
+ "learning_rate": 0.0001666666666666667,
806
+ "loss": 0.6705,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.38,
811
+ "learning_rate": 0.000168,
812
+ "loss": 0.647,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.38,
817
+ "learning_rate": 0.00016933333333333335,
818
+ "loss": 0.5078,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.38,
823
+ "learning_rate": 0.00017066666666666668,
824
+ "loss": 0.6334,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.39,
829
+ "learning_rate": 0.000172,
830
+ "loss": 0.5245,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.39,
835
+ "learning_rate": 0.00017333333333333334,
836
+ "loss": 0.6218,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.39,
841
+ "learning_rate": 0.00017466666666666667,
842
+ "loss": 0.5513,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.4,
847
+ "learning_rate": 0.00017600000000000002,
848
+ "loss": 0.6845,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.4,
853
+ "learning_rate": 0.00017733333333333335,
854
+ "loss": 0.6162,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.4,
859
+ "learning_rate": 0.00017866666666666668,
860
+ "loss": 0.4964,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.4,
865
+ "learning_rate": 0.00018,
866
+ "loss": 0.753,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.41,
871
+ "learning_rate": 0.00018133333333333334,
872
+ "loss": 0.4971,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.41,
877
+ "learning_rate": 0.00018266666666666667,
878
+ "loss": 0.4545,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.41,
883
+ "learning_rate": 0.00018400000000000003,
884
+ "loss": 0.455,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.42,
889
+ "learning_rate": 0.00018533333333333333,
890
+ "loss": 0.5624,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.42,
895
+ "learning_rate": 0.0001866666666666667,
896
+ "loss": 0.5466,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.42,
901
+ "eval_loss": 0.5101627707481384,
902
+ "eval_runtime": 19.7076,
903
+ "eval_samples_per_second": 82.658,
904
+ "eval_steps_per_second": 41.355,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.42,
909
+ "learning_rate": 0.000188,
910
+ "loss": 0.5263,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.43,
915
+ "learning_rate": 0.00018933333333333335,
916
+ "loss": 0.6072,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.43,
921
+ "learning_rate": 0.00019066666666666668,
922
+ "loss": 0.6378,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.43,
927
+ "learning_rate": 0.000192,
928
+ "loss": 0.5414,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.43,
933
+ "learning_rate": 0.00019333333333333333,
934
+ "loss": 0.6037,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.44,
939
+ "learning_rate": 0.0001946666666666667,
940
+ "loss": 0.4801,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.44,
945
+ "learning_rate": 0.000196,
946
+ "loss": 0.6265,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.44,
951
+ "learning_rate": 0.00019733333333333335,
952
+ "loss": 0.6518,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.45,
957
+ "learning_rate": 0.00019866666666666668,
958
+ "loss": 0.5443,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.45,
963
+ "learning_rate": 0.0002,
964
+ "loss": 0.5715,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.45,
969
+ "learning_rate": 0.00020133333333333334,
970
+ "loss": 0.6174,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.46,
975
+ "learning_rate": 0.0002026666666666667,
976
+ "loss": 0.5013,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.46,
981
+ "learning_rate": 0.00020400000000000003,
982
+ "loss": 0.5018,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.46,
987
+ "learning_rate": 0.00020533333333333333,
988
+ "loss": 0.4345,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.46,
993
+ "learning_rate": 0.00020666666666666668,
994
+ "loss": 0.5074,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.47,
999
+ "learning_rate": 0.00020800000000000001,
1000
+ "loss": 0.5118,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.47,
1005
+ "learning_rate": 0.00020933333333333334,
1006
+ "loss": 0.6067,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.47,
1011
+ "learning_rate": 0.00021066666666666665,
1012
+ "loss": 0.7615,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.48,
1017
+ "learning_rate": 0.00021200000000000003,
1018
+ "loss": 0.4524,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.48,
1023
+ "learning_rate": 0.00021333333333333333,
1024
+ "loss": 0.4395,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.48,
1029
+ "eval_loss": 0.5064823627471924,
1030
+ "eval_runtime": 19.6784,
1031
+ "eval_samples_per_second": 82.781,
1032
+ "eval_steps_per_second": 41.416,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.48,
1037
+ "learning_rate": 0.00021466666666666666,
1038
+ "loss": 0.3767,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.49,
1043
+ "learning_rate": 0.00021600000000000002,
1044
+ "loss": 0.4539,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.49,
1049
+ "learning_rate": 0.00021733333333333335,
1050
+ "loss": 0.553,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.49,
1055
+ "learning_rate": 0.00021866666666666665,
1056
+ "loss": 0.5605,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.49,
1061
+ "learning_rate": 0.00022000000000000003,
1062
+ "loss": 0.5756,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.5,
1067
+ "learning_rate": 0.00022133333333333334,
1068
+ "loss": 0.5019,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.5,
1073
+ "learning_rate": 0.00022266666666666667,
1074
+ "loss": 0.6492,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.5,
1079
+ "learning_rate": 0.00022400000000000002,
1080
+ "loss": 0.4588,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.51,
1085
+ "learning_rate": 0.00022533333333333335,
1086
+ "loss": 0.465,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.51,
1091
+ "learning_rate": 0.00022666666666666668,
1092
+ "loss": 0.6886,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.51,
1097
+ "learning_rate": 0.00022799999999999999,
1098
+ "loss": 0.6053,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.51,
1103
+ "learning_rate": 0.00022933333333333334,
1104
+ "loss": 0.5904,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.52,
1109
+ "learning_rate": 0.00023066666666666667,
1110
+ "loss": 0.566,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.52,
1115
+ "learning_rate": 0.000232,
1116
+ "loss": 0.6075,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.52,
1121
+ "learning_rate": 0.00023333333333333336,
1122
+ "loss": 0.5057,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.53,
1127
+ "learning_rate": 0.0002346666666666667,
1128
+ "loss": 0.463,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.53,
1133
+ "learning_rate": 0.000236,
1134
+ "loss": 0.6253,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.53,
1139
+ "learning_rate": 0.00023733333333333337,
1140
+ "loss": 0.4351,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.54,
1145
+ "learning_rate": 0.00023866666666666668,
1146
+ "loss": 0.4774,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.54,
1151
+ "learning_rate": 0.00024,
1152
+ "loss": 0.6854,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.54,
1157
+ "eval_loss": 0.49708327651023865,
1158
+ "eval_runtime": 19.695,
1159
+ "eval_samples_per_second": 82.711,
1160
+ "eval_steps_per_second": 41.381,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.54,
1165
+ "learning_rate": 0.00024133333333333336,
1166
+ "loss": 0.6335,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.54,
1171
+ "learning_rate": 0.0002426666666666667,
1172
+ "loss": 0.4519,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.55,
1177
+ "learning_rate": 0.000244,
1178
+ "loss": 0.5676,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.55,
1183
+ "learning_rate": 0.00024533333333333335,
1184
+ "loss": 0.5759,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.55,
1189
+ "learning_rate": 0.0002466666666666667,
1190
+ "loss": 0.4579,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.56,
1195
+ "learning_rate": 0.000248,
1196
+ "loss": 0.8357,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.56,
1201
+ "learning_rate": 0.00024933333333333334,
1202
+ "loss": 0.5032,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.56,
1207
+ "learning_rate": 0.00025066666666666667,
1208
+ "loss": 0.4588,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.57,
1213
+ "learning_rate": 0.000252,
1214
+ "loss": 0.8308,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.57,
1219
+ "learning_rate": 0.00025333333333333333,
1220
+ "loss": 0.4694,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.57,
1225
+ "learning_rate": 0.0002546666666666667,
1226
+ "loss": 0.4331,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.57,
1231
+ "learning_rate": 0.00025600000000000004,
1232
+ "loss": 0.4927,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.58,
1237
+ "learning_rate": 0.0002573333333333333,
1238
+ "loss": 0.5314,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.58,
1243
+ "learning_rate": 0.00025866666666666665,
1244
+ "loss": 0.7151,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.58,
1249
+ "learning_rate": 0.00026000000000000003,
1250
+ "loss": 0.5414,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.59,
1255
+ "learning_rate": 0.00026133333333333336,
1256
+ "loss": 0.5041,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.59,
1261
+ "learning_rate": 0.00026266666666666664,
1262
+ "loss": 0.7378,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.59,
1267
+ "learning_rate": 0.000264,
1268
+ "loss": 0.4902,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.6,
1273
+ "learning_rate": 0.00026533333333333335,
1274
+ "loss": 0.5758,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.6,
1279
+ "learning_rate": 0.0002666666666666667,
1280
+ "loss": 0.7326,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.6,
1285
+ "eval_loss": 0.5149964690208435,
1286
+ "eval_runtime": 19.7002,
1287
+ "eval_samples_per_second": 82.69,
1288
+ "eval_steps_per_second": 41.37,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.6,
1293
+ "learning_rate": 0.000268,
1294
+ "loss": 0.7322,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.6,
1299
+ "learning_rate": 0.00026933333333333334,
1300
+ "loss": 0.5464,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.61,
1305
+ "learning_rate": 0.00027066666666666667,
1306
+ "loss": 0.6081,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.61,
1311
+ "learning_rate": 0.00027200000000000005,
1312
+ "loss": 0.5572,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.61,
1317
+ "learning_rate": 0.00027333333333333333,
1318
+ "loss": 0.4734,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.62,
1323
+ "learning_rate": 0.00027466666666666666,
1324
+ "loss": 0.3858,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.62,
1329
+ "learning_rate": 0.000276,
1330
+ "loss": 0.5716,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.62,
1335
+ "learning_rate": 0.00027733333333333337,
1336
+ "loss": 0.6245,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.63,
1341
+ "learning_rate": 0.0002786666666666667,
1342
+ "loss": 0.6528,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.63,
1347
+ "learning_rate": 0.00028,
1348
+ "loss": 0.6356,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.63,
1353
+ "learning_rate": 0.00028133333333333336,
1354
+ "loss": 0.5439,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.63,
1359
+ "learning_rate": 0.0002826666666666667,
1360
+ "loss": 0.7304,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.64,
1365
+ "learning_rate": 0.000284,
1366
+ "loss": 0.4229,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.64,
1371
+ "learning_rate": 0.00028533333333333335,
1372
+ "loss": 0.6272,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.64,
1377
+ "learning_rate": 0.0002866666666666667,
1378
+ "loss": 0.6347,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.65,
1383
+ "learning_rate": 0.000288,
1384
+ "loss": 0.5148,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.65,
1389
+ "learning_rate": 0.0002893333333333334,
1390
+ "loss": 0.5562,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.65,
1395
+ "learning_rate": 0.00029066666666666667,
1396
+ "loss": 0.5406,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.66,
1401
+ "learning_rate": 0.000292,
1402
+ "loss": 0.5403,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.66,
1407
+ "learning_rate": 0.0002933333333333333,
1408
+ "loss": 0.8204,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.66,
1413
+ "eval_loss": 0.5008006691932678,
1414
+ "eval_runtime": 19.7142,
1415
+ "eval_samples_per_second": 82.631,
1416
+ "eval_steps_per_second": 41.341,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.66,
1421
+ "learning_rate": 0.0002946666666666667,
1422
+ "loss": 0.5589,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.66,
1427
+ "learning_rate": 0.000296,
1428
+ "loss": 0.5268,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.67,
1433
+ "learning_rate": 0.0002973333333333333,
1434
+ "loss": 0.4463,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 0.67,
1439
+ "learning_rate": 0.0002986666666666667,
1440
+ "loss": 0.4867,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 0.67,
1445
+ "learning_rate": 0.00030000000000000003,
1446
+ "loss": 0.4553,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 0.68,
1451
+ "learning_rate": 0.00030133333333333336,
1452
+ "loss": 0.673,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 0.68,
1457
+ "learning_rate": 0.0003026666666666667,
1458
+ "loss": 0.6834,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 0.68,
1463
+ "learning_rate": 0.000304,
1464
+ "loss": 0.6557,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 0.69,
1469
+ "learning_rate": 0.00030533333333333335,
1470
+ "loss": 0.5877,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 0.69,
1475
+ "learning_rate": 0.0003066666666666667,
1476
+ "loss": 0.6514,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 0.69,
1481
+ "learning_rate": 0.000308,
1482
+ "loss": 0.6256,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 0.69,
1487
+ "learning_rate": 0.00030933333333333334,
1488
+ "loss": 0.3928,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 0.7,
1493
+ "learning_rate": 0.00031066666666666666,
1494
+ "loss": 0.5906,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 0.7,
1499
+ "learning_rate": 0.00031200000000000005,
1500
+ "loss": 0.5967,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 0.7,
1505
+ "learning_rate": 0.0003133333333333333,
1506
+ "loss": 0.5324,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 0.71,
1511
+ "learning_rate": 0.00031466666666666665,
1512
+ "loss": 0.4432,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 0.71,
1517
+ "learning_rate": 0.00031600000000000004,
1518
+ "loss": 0.4914,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 0.71,
1523
+ "learning_rate": 0.00031733333333333337,
1524
+ "loss": 0.7376,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 0.72,
1529
+ "learning_rate": 0.00031866666666666664,
1530
+ "loss": 0.5002,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 0.72,
1535
+ "learning_rate": 0.00032,
1536
+ "loss": 0.6009,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 0.72,
1541
+ "eval_loss": 0.4971613585948944,
1542
+ "eval_runtime": 19.7057,
1543
+ "eval_samples_per_second": 82.666,
1544
+ "eval_steps_per_second": 41.359,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 0.72,
1549
+ "learning_rate": 0.00032133333333333336,
1550
+ "loss": 0.3989,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 0.72,
1555
+ "learning_rate": 0.0003226666666666667,
1556
+ "loss": 0.5301,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 0.73,
1561
+ "learning_rate": 0.000324,
1562
+ "loss": 0.5951,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 0.73,
1567
+ "learning_rate": 0.00032533333333333334,
1568
+ "loss": 0.55,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 0.73,
1573
+ "learning_rate": 0.0003266666666666667,
1574
+ "loss": 0.5858,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 0.74,
1579
+ "learning_rate": 0.000328,
1580
+ "loss": 0.452,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 0.74,
1585
+ "learning_rate": 0.00032933333333333333,
1586
+ "loss": 0.4798,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 0.74,
1591
+ "learning_rate": 0.00033066666666666666,
1592
+ "loss": 0.5152,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 0.75,
1597
+ "learning_rate": 0.000332,
1598
+ "loss": 0.4678,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 0.75,
1603
+ "learning_rate": 0.0003333333333333334,
1604
+ "loss": 0.8398,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 0.75,
1609
+ "learning_rate": 0.0003346666666666667,
1610
+ "loss": 0.4644,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 0.75,
1615
+ "learning_rate": 0.000336,
1616
+ "loss": 0.6338,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 0.76,
1621
+ "learning_rate": 0.00033733333333333337,
1622
+ "loss": 0.6207,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 0.76,
1627
+ "learning_rate": 0.0003386666666666667,
1628
+ "loss": 0.6672,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 0.76,
1633
+ "learning_rate": 0.00034,
1634
+ "loss": 0.6411,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 0.77,
1639
+ "learning_rate": 0.00034133333333333335,
1640
+ "loss": 0.37,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 0.77,
1645
+ "learning_rate": 0.0003426666666666667,
1646
+ "loss": 0.3361,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 0.77,
1651
+ "learning_rate": 0.000344,
1652
+ "loss": 0.4482,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 0.78,
1657
+ "learning_rate": 0.00034533333333333334,
1658
+ "loss": 0.7842,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 0.78,
1663
+ "learning_rate": 0.00034666666666666667,
1664
+ "loss": 0.4471,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 0.78,
1669
+ "eval_loss": 0.4944275915622711,
1670
+ "eval_runtime": 19.6961,
1671
+ "eval_samples_per_second": 82.707,
1672
+ "eval_steps_per_second": 41.379,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 0.78,
1677
+ "learning_rate": 0.000348,
1678
+ "loss": 0.5071,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 0.78,
1683
+ "learning_rate": 0.00034933333333333333,
1684
+ "loss": 0.5048,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 0.79,
1689
+ "learning_rate": 0.0003506666666666667,
1690
+ "loss": 0.5687,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 0.79,
1695
+ "learning_rate": 0.00035200000000000005,
1696
+ "loss": 0.5559,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 0.79,
1701
+ "learning_rate": 0.0003533333333333333,
1702
+ "loss": 0.4472,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 0.8,
1707
+ "learning_rate": 0.0003546666666666667,
1708
+ "loss": 0.4627,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 0.8,
1713
+ "learning_rate": 0.00035600000000000003,
1714
+ "loss": 0.5967,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 0.8,
1719
+ "learning_rate": 0.00035733333333333336,
1720
+ "loss": 0.5931,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 0.81,
1725
+ "learning_rate": 0.00035866666666666664,
1726
+ "loss": 0.6736,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 0.81,
1731
+ "learning_rate": 0.00036,
1732
+ "loss": 0.5897,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 0.81,
1737
+ "learning_rate": 0.00036133333333333335,
1738
+ "loss": 0.573,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 0.81,
1743
+ "learning_rate": 0.0003626666666666667,
1744
+ "loss": 0.4944,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 0.82,
1749
+ "learning_rate": 0.000364,
1750
+ "loss": 0.5639,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 0.82,
1755
+ "learning_rate": 0.00036533333333333334,
1756
+ "loss": 0.5228,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 0.82,
1761
+ "learning_rate": 0.00036666666666666667,
1762
+ "loss": 0.4963,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 0.83,
1767
+ "learning_rate": 0.00036800000000000005,
1768
+ "loss": 0.4877,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 0.83,
1773
+ "learning_rate": 0.00036933333333333333,
1774
+ "loss": 0.5022,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 0.83,
1779
+ "learning_rate": 0.00037066666666666666,
1780
+ "loss": 0.4956,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 0.84,
1785
+ "learning_rate": 0.00037200000000000004,
1786
+ "loss": 0.4455,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 0.84,
1791
+ "learning_rate": 0.0003733333333333334,
1792
+ "loss": 0.5934,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 0.84,
1797
+ "eval_loss": 0.5145900249481201,
1798
+ "eval_runtime": 19.7148,
1799
+ "eval_samples_per_second": 82.628,
1800
+ "eval_steps_per_second": 41.34,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 0.84,
1805
+ "learning_rate": 0.0003746666666666667,
1806
+ "loss": 0.5771,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 0.84,
1811
+ "learning_rate": 0.000376,
1812
+ "loss": 0.7037,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 0.85,
1817
+ "learning_rate": 0.00037733333333333336,
1818
+ "loss": 0.586,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 0.85,
1823
+ "learning_rate": 0.0003786666666666667,
1824
+ "loss": 0.6398,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 0.85,
1829
+ "learning_rate": 0.00038,
1830
+ "loss": 0.4984,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 0.86,
1835
+ "learning_rate": 0.00038133333333333335,
1836
+ "loss": 0.5042,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 0.86,
1841
+ "learning_rate": 0.0003826666666666667,
1842
+ "loss": 0.5879,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 0.86,
1847
+ "learning_rate": 0.000384,
1848
+ "loss": 0.5108,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 0.87,
1853
+ "learning_rate": 0.0003853333333333334,
1854
+ "loss": 0.4034,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 0.87,
1859
+ "learning_rate": 0.00038666666666666667,
1860
+ "loss": 0.5854,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 0.87,
1865
+ "learning_rate": 0.000388,
1866
+ "loss": 0.6138,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 0.87,
1871
+ "learning_rate": 0.0003893333333333334,
1872
+ "loss": 0.5932,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 0.88,
1877
+ "learning_rate": 0.0003906666666666667,
1878
+ "loss": 0.4475,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 0.88,
1883
+ "learning_rate": 0.000392,
1884
+ "loss": 0.615,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 0.88,
1889
+ "learning_rate": 0.0003933333333333333,
1890
+ "loss": 0.7312,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 0.89,
1895
+ "learning_rate": 0.0003946666666666667,
1896
+ "loss": 0.5778,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 0.89,
1901
+ "learning_rate": 0.00039600000000000003,
1902
+ "loss": 0.5074,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 0.89,
1907
+ "learning_rate": 0.00039733333333333336,
1908
+ "loss": 0.5557,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 0.9,
1913
+ "learning_rate": 0.0003986666666666667,
1914
+ "loss": 0.5038,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 0.9,
1919
+ "learning_rate": 0.0004,
1920
+ "loss": 0.6574,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 0.9,
1925
+ "eval_loss": 0.5057099461555481,
1926
+ "eval_runtime": 19.7067,
1927
+ "eval_samples_per_second": 82.662,
1928
+ "eval_steps_per_second": 41.356,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 0.9,
1933
+ "learning_rate": 0.0003999979972589652,
1934
+ "loss": 0.6309,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 0.9,
1939
+ "learning_rate": 0.00039999198907597047,
1940
+ "loss": 0.65,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 0.91,
1945
+ "learning_rate": 0.00039998197557134424,
1946
+ "loss": 0.4086,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 0.91,
1951
+ "learning_rate": 0.00039996795694563096,
1952
+ "loss": 0.4373,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 0.91,
1957
+ "learning_rate": 0.0003999499334795875,
1958
+ "loss": 0.5783,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 0.92,
1963
+ "learning_rate": 0.0003999279055341771,
1964
+ "loss": 0.4066,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 0.92,
1969
+ "learning_rate": 0.0003999018735505626,
1970
+ "loss": 0.4617,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 0.92,
1975
+ "learning_rate": 0.0003998718380500971,
1976
+ "loss": 0.5894,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 0.93,
1981
+ "learning_rate": 0.00039983779963431395,
1982
+ "loss": 0.5726,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 0.93,
1987
+ "learning_rate": 0.00039979975898491447,
1988
+ "loss": 0.4642,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 0.93,
1993
+ "learning_rate": 0.0003997577168637543,
1994
+ "loss": 0.5851,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 0.93,
1999
+ "learning_rate": 0.00039971167411282835,
2000
+ "loss": 0.4258,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 0.94,
2005
+ "learning_rate": 0.0003996616316542537,
2006
+ "loss": 0.3955,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 0.94,
2011
+ "learning_rate": 0.00039960759049025105,
2012
+ "loss": 0.5344,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 0.94,
2017
+ "learning_rate": 0.00039954955170312504,
2018
+ "loss": 0.6945,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 0.95,
2023
+ "learning_rate": 0.00039948751645524236,
2024
+ "loss": 0.6328,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 0.95,
2029
+ "learning_rate": 0.0003994214859890082,
2030
+ "loss": 0.5978,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 0.95,
2035
+ "learning_rate": 0.00039935146162684205,
2036
+ "loss": 0.5626,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 0.96,
2041
+ "learning_rate": 0.0003992774447711503,
2042
+ "loss": 0.4901,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 0.96,
2047
+ "learning_rate": 0.000399199436904299,
2048
+ "loss": 0.4566,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 0.96,
2053
+ "eval_loss": 0.487981915473938,
2054
+ "eval_runtime": 19.7019,
2055
+ "eval_samples_per_second": 82.682,
2056
+ "eval_steps_per_second": 41.366,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 0.96,
2061
+ "learning_rate": 0.0003991174395885838,
2062
+ "loss": 0.5215,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 0.96,
2067
+ "learning_rate": 0.0003990314544661984,
2068
+ "loss": 0.4068,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 0.97,
2073
+ "learning_rate": 0.00039894148325920223,
2074
+ "loss": 0.4953,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 0.97,
2079
+ "learning_rate": 0.0003988475277694856,
2080
+ "loss": 0.5265,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 0.97,
2085
+ "learning_rate": 0.00039874958987873364,
2086
+ "loss": 0.4939,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 0.98,
2091
+ "learning_rate": 0.00039864767154838864,
2092
+ "loss": 0.6296,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 0.98,
2097
+ "learning_rate": 0.0003985417748196108,
2098
+ "loss": 0.7122,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 0.98,
2103
+ "learning_rate": 0.00039843190181323746,
2104
+ "loss": 0.4771,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 0.99,
2109
+ "learning_rate": 0.00039831805472974037,
2110
+ "loss": 0.3858,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 0.99,
2115
+ "learning_rate": 0.00039820023584918174,
2116
+ "loss": 0.7111,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 0.99,
2121
+ "learning_rate": 0.0003980784475311686,
2122
+ "loss": 0.5284,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 0.99,
2127
+ "learning_rate": 0.00039795269221480574,
2128
+ "loss": 0.5413,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 1.0,
2133
+ "learning_rate": 0.00039782297241864635,
2134
+ "loss": 0.6097,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 1.0,
2139
+ "learning_rate": 0.000397689290740642,
2140
+ "loss": 0.4085,
2141
+ "step": 334
2142
+ }
2143
+ ],
2144
+ "logging_steps": 1,
2145
+ "max_steps": 1002,
2146
+ "num_train_epochs": 3,
2147
+ "save_steps": 500,
2148
+ "total_flos": 9.448895634934333e+17,
2149
+ "trial_name": null,
2150
+ "trial_params": null
2151
+ }
checkpoint-334/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:437823b67a8e71dde1f898ebf1534afc55a51ee86d8735c8e1f03954c766c4a4
3
+ size 4475
checkpoint-668/README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: mistralai/Mistral-7B-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Shared by [optional]:** [More Information Needed]
22
+ - **Model type:** [More Information Needed]
23
+ - **Language(s) (NLP):** [More Information Needed]
24
+ - **License:** [More Information Needed]
25
+ - **Finetuned from model [optional]:** [More Information Needed]
26
+
27
+ ### Model Sources [optional]
28
+
29
+ <!-- Provide the basic links for the model. -->
30
+
31
+ - **Repository:** [More Information Needed]
32
+ - **Paper [optional]:** [More Information Needed]
33
+ - **Demo [optional]:** [More Information Needed]
34
+
35
+ ## Uses
36
+
37
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
+
39
+ ### Direct Use
40
+
41
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
+
43
+ [More Information Needed]
44
+
45
+ ### Downstream Use [optional]
46
+
47
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
+
49
+ [More Information Needed]
50
+
51
+ ### Out-of-Scope Use
52
+
53
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
+
55
+ [More Information Needed]
56
+
57
+ ## Bias, Risks, and Limitations
58
+
59
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
+
61
+ [More Information Needed]
62
+
63
+ ### Recommendations
64
+
65
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
+
67
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
+
69
+ ## How to Get Started with the Model
70
+
71
+ Use the code below to get started with the model.
72
+
73
+ [More Information Needed]
74
+
75
+ ## Training Details
76
+
77
+ ### Training Data
78
+
79
+ <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
+
81
+ [More Information Needed]
82
+
83
+ ### Training Procedure
84
+
85
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
+
87
+ #### Preprocessing [optional]
88
+
89
+ [More Information Needed]
90
+
91
+
92
+ #### Training Hyperparameters
93
+
94
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
+
96
+ #### Speeds, Sizes, Times [optional]
97
+
98
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
+
100
+ [More Information Needed]
101
+
102
+ ## Evaluation
103
+
104
+ <!-- This section describes the evaluation protocols and provides the results. -->
105
+
106
+ ### Testing Data, Factors & Metrics
107
+
108
+ #### Testing Data
109
+
110
+ <!-- This should link to a Data Card if possible. -->
111
+
112
+ [More Information Needed]
113
+
114
+ #### Factors
115
+
116
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
+
118
+ [More Information Needed]
119
+
120
+ #### Metrics
121
+
122
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
+
124
+ [More Information Needed]
125
+
126
+ ### Results
127
+
128
+ [More Information Needed]
129
+
130
+ #### Summary
131
+
132
+
133
+
134
+ ## Model Examination [optional]
135
+
136
+ <!-- Relevant interpretability work for the model goes here -->
137
+
138
+ [More Information Needed]
139
+
140
+ ## Environmental Impact
141
+
142
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
+
144
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
+
146
+ - **Hardware Type:** [More Information Needed]
147
+ - **Hours used:** [More Information Needed]
148
+ - **Cloud Provider:** [More Information Needed]
149
+ - **Compute Region:** [More Information Needed]
150
+ - **Carbon Emitted:** [More Information Needed]
151
+
152
+ ## Technical Specifications [optional]
153
+
154
+ ### Model Architecture and Objective
155
+
156
+ [More Information Needed]
157
+
158
+ ### Compute Infrastructure
159
+
160
+ [More Information Needed]
161
+
162
+ #### Hardware
163
+
164
+ [More Information Needed]
165
+
166
+ #### Software
167
+
168
+ [More Information Needed]
169
+
170
+ ## Citation [optional]
171
+
172
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
+
174
+ **BibTeX:**
175
+
176
+ [More Information Needed]
177
+
178
+ **APA:**
179
+
180
+ [More Information Needed]
181
+
182
+ ## Glossary [optional]
183
+
184
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
+
186
+ [More Information Needed]
187
+
188
+ ## More Information [optional]
189
+
190
+ [More Information Needed]
191
+
192
+ ## Model Card Authors [optional]
193
+
194
+ [More Information Needed]
195
+
196
+ ## Model Card Contact
197
+
198
+ [More Information Needed]
199
+
200
+
201
+ ## Training procedure
202
+
203
+
204
+ The following `bitsandbytes` quantization config was used during training:
205
+ - quant_method: bitsandbytes
206
+ - load_in_8bit: False
207
+ - load_in_4bit: True
208
+ - llm_int8_threshold: 6.0
209
+ - llm_int8_skip_modules: None
210
+ - llm_int8_enable_fp32_cpu_offload: False
211
+ - llm_int8_has_fp16_weight: False
212
+ - bnb_4bit_quant_type: nf4
213
+ - bnb_4bit_use_double_quant: True
214
+ - bnb_4bit_compute_dtype: bfloat16
215
+
216
+ ### Framework versions
217
+
218
+
219
+ - PEFT 0.6.0.dev0
checkpoint-668/adapter_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "lora_alpha": 16,
12
+ "lora_dropout": 0.05,
13
+ "modules_to_save": null,
14
+ "peft_type": "LORA",
15
+ "r": 32,
16
+ "rank_pattern": {},
17
+ "revision": null,
18
+ "target_modules": [
19
+ "o_proj",
20
+ "v_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "down_proj",
24
+ "gate_proj",
25
+ "up_proj"
26
+ ],
27
+ "task_type": "CAUSAL_LM"
28
+ }
checkpoint-668/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c18bcb71d4eb4db3d371f982e40c6464027fa7dcee7078cd5ce04872b4c14c8
3
+ size 335705741
checkpoint-668/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4caf0bf32c1a2d0004f7b3a64a4a59368f9738bcaa9f49243bec4e120c0a2adc
3
+ size 671364101
checkpoint-668/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8edc689b4e667096ce9f1321230458cf516e583142069fb7ce01188cc266c8b5
3
+ size 14575
checkpoint-668/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3206f15c7d9ecd7446f3de714be42999153b81a96f79b5bbedecb40eef013d8c
3
+ size 627
checkpoint-668/trainer_state.json ADDED
@@ -0,0 +1,4291 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 20,
6
+ "global_step": 668,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 1.3333333333333334e-06,
14
+ "loss": 2.8321,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 2.666666666666667e-06,
20
+ "loss": 3.0972,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 4.000000000000001e-06,
26
+ "loss": 2.6421,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.01,
31
+ "learning_rate": 5.333333333333334e-06,
32
+ "loss": 2.3812,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.01,
37
+ "learning_rate": 6.666666666666667e-06,
38
+ "loss": 2.6574,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.02,
43
+ "learning_rate": 8.000000000000001e-06,
44
+ "loss": 2.407,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.02,
49
+ "learning_rate": 9.333333333333334e-06,
50
+ "loss": 3.2132,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.02,
55
+ "learning_rate": 1.0666666666666667e-05,
56
+ "loss": 2.2604,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.03,
61
+ "learning_rate": 1.2e-05,
62
+ "loss": 1.905,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.03,
67
+ "learning_rate": 1.3333333333333333e-05,
68
+ "loss": 2.8917,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.03,
73
+ "learning_rate": 1.4666666666666668e-05,
74
+ "loss": 1.7831,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.04,
79
+ "learning_rate": 1.6000000000000003e-05,
80
+ "loss": 1.372,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.04,
85
+ "learning_rate": 1.7333333333333336e-05,
86
+ "loss": 1.7615,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.04,
91
+ "learning_rate": 1.866666666666667e-05,
92
+ "loss": 1.2265,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.04,
97
+ "learning_rate": 2e-05,
98
+ "loss": 0.7593,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.05,
103
+ "learning_rate": 2.1333333333333335e-05,
104
+ "loss": 0.8485,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.05,
109
+ "learning_rate": 2.2666666666666668e-05,
110
+ "loss": 0.7462,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.05,
115
+ "learning_rate": 2.4e-05,
116
+ "loss": 0.7687,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.06,
121
+ "learning_rate": 2.5333333333333337e-05,
122
+ "loss": 0.66,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.06,
127
+ "learning_rate": 2.6666666666666667e-05,
128
+ "loss": 0.8335,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.06,
133
+ "eval_loss": 0.6428894400596619,
134
+ "eval_runtime": 19.6908,
135
+ "eval_samples_per_second": 82.729,
136
+ "eval_steps_per_second": 41.39,
137
+ "step": 20
138
+ },
139
+ {
140
+ "epoch": 0.06,
141
+ "learning_rate": 2.8000000000000003e-05,
142
+ "loss": 0.8233,
143
+ "step": 21
144
+ },
145
+ {
146
+ "epoch": 0.07,
147
+ "learning_rate": 2.9333333333333336e-05,
148
+ "loss": 0.7742,
149
+ "step": 22
150
+ },
151
+ {
152
+ "epoch": 0.07,
153
+ "learning_rate": 3.066666666666667e-05,
154
+ "loss": 0.8104,
155
+ "step": 23
156
+ },
157
+ {
158
+ "epoch": 0.07,
159
+ "learning_rate": 3.2000000000000005e-05,
160
+ "loss": 0.6492,
161
+ "step": 24
162
+ },
163
+ {
164
+ "epoch": 0.07,
165
+ "learning_rate": 3.3333333333333335e-05,
166
+ "loss": 0.698,
167
+ "step": 25
168
+ },
169
+ {
170
+ "epoch": 0.08,
171
+ "learning_rate": 3.466666666666667e-05,
172
+ "loss": 0.8286,
173
+ "step": 26
174
+ },
175
+ {
176
+ "epoch": 0.08,
177
+ "learning_rate": 3.6e-05,
178
+ "loss": 0.9258,
179
+ "step": 27
180
+ },
181
+ {
182
+ "epoch": 0.08,
183
+ "learning_rate": 3.733333333333334e-05,
184
+ "loss": 0.6863,
185
+ "step": 28
186
+ },
187
+ {
188
+ "epoch": 0.09,
189
+ "learning_rate": 3.866666666666667e-05,
190
+ "loss": 0.6822,
191
+ "step": 29
192
+ },
193
+ {
194
+ "epoch": 0.09,
195
+ "learning_rate": 4e-05,
196
+ "loss": 0.7762,
197
+ "step": 30
198
+ },
199
+ {
200
+ "epoch": 0.09,
201
+ "learning_rate": 4.133333333333333e-05,
202
+ "loss": 0.7259,
203
+ "step": 31
204
+ },
205
+ {
206
+ "epoch": 0.1,
207
+ "learning_rate": 4.266666666666667e-05,
208
+ "loss": 0.6832,
209
+ "step": 32
210
+ },
211
+ {
212
+ "epoch": 0.1,
213
+ "learning_rate": 4.4000000000000006e-05,
214
+ "loss": 0.7542,
215
+ "step": 33
216
+ },
217
+ {
218
+ "epoch": 0.1,
219
+ "learning_rate": 4.5333333333333335e-05,
220
+ "loss": 0.742,
221
+ "step": 34
222
+ },
223
+ {
224
+ "epoch": 0.1,
225
+ "learning_rate": 4.666666666666667e-05,
226
+ "loss": 0.7404,
227
+ "step": 35
228
+ },
229
+ {
230
+ "epoch": 0.11,
231
+ "learning_rate": 4.8e-05,
232
+ "loss": 0.7476,
233
+ "step": 36
234
+ },
235
+ {
236
+ "epoch": 0.11,
237
+ "learning_rate": 4.933333333333334e-05,
238
+ "loss": 0.728,
239
+ "step": 37
240
+ },
241
+ {
242
+ "epoch": 0.11,
243
+ "learning_rate": 5.0666666666666674e-05,
244
+ "loss": 0.7258,
245
+ "step": 38
246
+ },
247
+ {
248
+ "epoch": 0.12,
249
+ "learning_rate": 5.2000000000000004e-05,
250
+ "loss": 0.5863,
251
+ "step": 39
252
+ },
253
+ {
254
+ "epoch": 0.12,
255
+ "learning_rate": 5.333333333333333e-05,
256
+ "loss": 0.6725,
257
+ "step": 40
258
+ },
259
+ {
260
+ "epoch": 0.12,
261
+ "eval_loss": 0.5888345837593079,
262
+ "eval_runtime": 19.6842,
263
+ "eval_samples_per_second": 82.757,
264
+ "eval_steps_per_second": 41.404,
265
+ "step": 40
266
+ },
267
+ {
268
+ "epoch": 0.12,
269
+ "learning_rate": 5.466666666666666e-05,
270
+ "loss": 0.672,
271
+ "step": 41
272
+ },
273
+ {
274
+ "epoch": 0.13,
275
+ "learning_rate": 5.6000000000000006e-05,
276
+ "loss": 0.656,
277
+ "step": 42
278
+ },
279
+ {
280
+ "epoch": 0.13,
281
+ "learning_rate": 5.7333333333333336e-05,
282
+ "loss": 0.7206,
283
+ "step": 43
284
+ },
285
+ {
286
+ "epoch": 0.13,
287
+ "learning_rate": 5.866666666666667e-05,
288
+ "loss": 0.7592,
289
+ "step": 44
290
+ },
291
+ {
292
+ "epoch": 0.13,
293
+ "learning_rate": 6e-05,
294
+ "loss": 0.7326,
295
+ "step": 45
296
+ },
297
+ {
298
+ "epoch": 0.14,
299
+ "learning_rate": 6.133333333333334e-05,
300
+ "loss": 0.7992,
301
+ "step": 46
302
+ },
303
+ {
304
+ "epoch": 0.14,
305
+ "learning_rate": 6.266666666666667e-05,
306
+ "loss": 0.5875,
307
+ "step": 47
308
+ },
309
+ {
310
+ "epoch": 0.14,
311
+ "learning_rate": 6.400000000000001e-05,
312
+ "loss": 0.6702,
313
+ "step": 48
314
+ },
315
+ {
316
+ "epoch": 0.15,
317
+ "learning_rate": 6.533333333333334e-05,
318
+ "loss": 0.7486,
319
+ "step": 49
320
+ },
321
+ {
322
+ "epoch": 0.15,
323
+ "learning_rate": 6.666666666666667e-05,
324
+ "loss": 0.5083,
325
+ "step": 50
326
+ },
327
+ {
328
+ "epoch": 0.15,
329
+ "learning_rate": 6.800000000000001e-05,
330
+ "loss": 0.7208,
331
+ "step": 51
332
+ },
333
+ {
334
+ "epoch": 0.16,
335
+ "learning_rate": 6.933333333333334e-05,
336
+ "loss": 0.8246,
337
+ "step": 52
338
+ },
339
+ {
340
+ "epoch": 0.16,
341
+ "learning_rate": 7.066666666666667e-05,
342
+ "loss": 0.7291,
343
+ "step": 53
344
+ },
345
+ {
346
+ "epoch": 0.16,
347
+ "learning_rate": 7.2e-05,
348
+ "loss": 0.6183,
349
+ "step": 54
350
+ },
351
+ {
352
+ "epoch": 0.16,
353
+ "learning_rate": 7.333333333333333e-05,
354
+ "loss": 0.7643,
355
+ "step": 55
356
+ },
357
+ {
358
+ "epoch": 0.17,
359
+ "learning_rate": 7.466666666666667e-05,
360
+ "loss": 0.6758,
361
+ "step": 56
362
+ },
363
+ {
364
+ "epoch": 0.17,
365
+ "learning_rate": 7.6e-05,
366
+ "loss": 0.5394,
367
+ "step": 57
368
+ },
369
+ {
370
+ "epoch": 0.17,
371
+ "learning_rate": 7.733333333333333e-05,
372
+ "loss": 0.7475,
373
+ "step": 58
374
+ },
375
+ {
376
+ "epoch": 0.18,
377
+ "learning_rate": 7.866666666666666e-05,
378
+ "loss": 0.5581,
379
+ "step": 59
380
+ },
381
+ {
382
+ "epoch": 0.18,
383
+ "learning_rate": 8e-05,
384
+ "loss": 0.5927,
385
+ "step": 60
386
+ },
387
+ {
388
+ "epoch": 0.18,
389
+ "eval_loss": 0.5602975487709045,
390
+ "eval_runtime": 19.6961,
391
+ "eval_samples_per_second": 82.707,
392
+ "eval_steps_per_second": 41.379,
393
+ "step": 60
394
+ },
395
+ {
396
+ "epoch": 0.18,
397
+ "learning_rate": 8.133333333333334e-05,
398
+ "loss": 0.6323,
399
+ "step": 61
400
+ },
401
+ {
402
+ "epoch": 0.19,
403
+ "learning_rate": 8.266666666666667e-05,
404
+ "loss": 0.7222,
405
+ "step": 62
406
+ },
407
+ {
408
+ "epoch": 0.19,
409
+ "learning_rate": 8.4e-05,
410
+ "loss": 0.6957,
411
+ "step": 63
412
+ },
413
+ {
414
+ "epoch": 0.19,
415
+ "learning_rate": 8.533333333333334e-05,
416
+ "loss": 0.4861,
417
+ "step": 64
418
+ },
419
+ {
420
+ "epoch": 0.19,
421
+ "learning_rate": 8.666666666666667e-05,
422
+ "loss": 0.635,
423
+ "step": 65
424
+ },
425
+ {
426
+ "epoch": 0.2,
427
+ "learning_rate": 8.800000000000001e-05,
428
+ "loss": 0.6229,
429
+ "step": 66
430
+ },
431
+ {
432
+ "epoch": 0.2,
433
+ "learning_rate": 8.933333333333334e-05,
434
+ "loss": 0.5476,
435
+ "step": 67
436
+ },
437
+ {
438
+ "epoch": 0.2,
439
+ "learning_rate": 9.066666666666667e-05,
440
+ "loss": 0.544,
441
+ "step": 68
442
+ },
443
+ {
444
+ "epoch": 0.21,
445
+ "learning_rate": 9.200000000000001e-05,
446
+ "loss": 0.6609,
447
+ "step": 69
448
+ },
449
+ {
450
+ "epoch": 0.21,
451
+ "learning_rate": 9.333333333333334e-05,
452
+ "loss": 0.803,
453
+ "step": 70
454
+ },
455
+ {
456
+ "epoch": 0.21,
457
+ "learning_rate": 9.466666666666667e-05,
458
+ "loss": 0.6424,
459
+ "step": 71
460
+ },
461
+ {
462
+ "epoch": 0.22,
463
+ "learning_rate": 9.6e-05,
464
+ "loss": 0.5638,
465
+ "step": 72
466
+ },
467
+ {
468
+ "epoch": 0.22,
469
+ "learning_rate": 9.733333333333335e-05,
470
+ "loss": 0.6053,
471
+ "step": 73
472
+ },
473
+ {
474
+ "epoch": 0.22,
475
+ "learning_rate": 9.866666666666668e-05,
476
+ "loss": 0.4952,
477
+ "step": 74
478
+ },
479
+ {
480
+ "epoch": 0.22,
481
+ "learning_rate": 0.0001,
482
+ "loss": 0.7466,
483
+ "step": 75
484
+ },
485
+ {
486
+ "epoch": 0.23,
487
+ "learning_rate": 0.00010133333333333335,
488
+ "loss": 0.5158,
489
+ "step": 76
490
+ },
491
+ {
492
+ "epoch": 0.23,
493
+ "learning_rate": 0.00010266666666666666,
494
+ "loss": 0.7381,
495
+ "step": 77
496
+ },
497
+ {
498
+ "epoch": 0.23,
499
+ "learning_rate": 0.00010400000000000001,
500
+ "loss": 0.5236,
501
+ "step": 78
502
+ },
503
+ {
504
+ "epoch": 0.24,
505
+ "learning_rate": 0.00010533333333333332,
506
+ "loss": 0.5489,
507
+ "step": 79
508
+ },
509
+ {
510
+ "epoch": 0.24,
511
+ "learning_rate": 0.00010666666666666667,
512
+ "loss": 0.5847,
513
+ "step": 80
514
+ },
515
+ {
516
+ "epoch": 0.24,
517
+ "eval_loss": 0.5362095832824707,
518
+ "eval_runtime": 19.6974,
519
+ "eval_samples_per_second": 82.701,
520
+ "eval_steps_per_second": 41.376,
521
+ "step": 80
522
+ },
523
+ {
524
+ "epoch": 0.24,
525
+ "learning_rate": 0.00010800000000000001,
526
+ "loss": 0.5874,
527
+ "step": 81
528
+ },
529
+ {
530
+ "epoch": 0.25,
531
+ "learning_rate": 0.00010933333333333333,
532
+ "loss": 0.5987,
533
+ "step": 82
534
+ },
535
+ {
536
+ "epoch": 0.25,
537
+ "learning_rate": 0.00011066666666666667,
538
+ "loss": 0.8255,
539
+ "step": 83
540
+ },
541
+ {
542
+ "epoch": 0.25,
543
+ "learning_rate": 0.00011200000000000001,
544
+ "loss": 0.6952,
545
+ "step": 84
546
+ },
547
+ {
548
+ "epoch": 0.25,
549
+ "learning_rate": 0.00011333333333333334,
550
+ "loss": 0.5358,
551
+ "step": 85
552
+ },
553
+ {
554
+ "epoch": 0.26,
555
+ "learning_rate": 0.00011466666666666667,
556
+ "loss": 0.5875,
557
+ "step": 86
558
+ },
559
+ {
560
+ "epoch": 0.26,
561
+ "learning_rate": 0.000116,
562
+ "loss": 0.5211,
563
+ "step": 87
564
+ },
565
+ {
566
+ "epoch": 0.26,
567
+ "learning_rate": 0.00011733333333333334,
568
+ "loss": 0.604,
569
+ "step": 88
570
+ },
571
+ {
572
+ "epoch": 0.27,
573
+ "learning_rate": 0.00011866666666666669,
574
+ "loss": 0.7087,
575
+ "step": 89
576
+ },
577
+ {
578
+ "epoch": 0.27,
579
+ "learning_rate": 0.00012,
580
+ "loss": 0.627,
581
+ "step": 90
582
+ },
583
+ {
584
+ "epoch": 0.27,
585
+ "learning_rate": 0.00012133333333333335,
586
+ "loss": 0.8013,
587
+ "step": 91
588
+ },
589
+ {
590
+ "epoch": 0.28,
591
+ "learning_rate": 0.00012266666666666668,
592
+ "loss": 0.7636,
593
+ "step": 92
594
+ },
595
+ {
596
+ "epoch": 0.28,
597
+ "learning_rate": 0.000124,
598
+ "loss": 0.5857,
599
+ "step": 93
600
+ },
601
+ {
602
+ "epoch": 0.28,
603
+ "learning_rate": 0.00012533333333333334,
604
+ "loss": 0.5942,
605
+ "step": 94
606
+ },
607
+ {
608
+ "epoch": 0.28,
609
+ "learning_rate": 0.00012666666666666666,
610
+ "loss": 0.6063,
611
+ "step": 95
612
+ },
613
+ {
614
+ "epoch": 0.29,
615
+ "learning_rate": 0.00012800000000000002,
616
+ "loss": 0.6896,
617
+ "step": 96
618
+ },
619
+ {
620
+ "epoch": 0.29,
621
+ "learning_rate": 0.00012933333333333332,
622
+ "loss": 0.47,
623
+ "step": 97
624
+ },
625
+ {
626
+ "epoch": 0.29,
627
+ "learning_rate": 0.00013066666666666668,
628
+ "loss": 0.6455,
629
+ "step": 98
630
+ },
631
+ {
632
+ "epoch": 0.3,
633
+ "learning_rate": 0.000132,
634
+ "loss": 0.5724,
635
+ "step": 99
636
+ },
637
+ {
638
+ "epoch": 0.3,
639
+ "learning_rate": 0.00013333333333333334,
640
+ "loss": 0.5552,
641
+ "step": 100
642
+ },
643
+ {
644
+ "epoch": 0.3,
645
+ "eval_loss": 0.525646984577179,
646
+ "eval_runtime": 19.6963,
647
+ "eval_samples_per_second": 82.706,
648
+ "eval_steps_per_second": 41.378,
649
+ "step": 100
650
+ },
651
+ {
652
+ "epoch": 0.3,
653
+ "learning_rate": 0.00013466666666666667,
654
+ "loss": 0.6286,
655
+ "step": 101
656
+ },
657
+ {
658
+ "epoch": 0.31,
659
+ "learning_rate": 0.00013600000000000003,
660
+ "loss": 0.5828,
661
+ "step": 102
662
+ },
663
+ {
664
+ "epoch": 0.31,
665
+ "learning_rate": 0.00013733333333333333,
666
+ "loss": 0.6024,
667
+ "step": 103
668
+ },
669
+ {
670
+ "epoch": 0.31,
671
+ "learning_rate": 0.00013866666666666669,
672
+ "loss": 0.6578,
673
+ "step": 104
674
+ },
675
+ {
676
+ "epoch": 0.31,
677
+ "learning_rate": 0.00014,
678
+ "loss": 0.5617,
679
+ "step": 105
680
+ },
681
+ {
682
+ "epoch": 0.32,
683
+ "learning_rate": 0.00014133333333333334,
684
+ "loss": 0.6382,
685
+ "step": 106
686
+ },
687
+ {
688
+ "epoch": 0.32,
689
+ "learning_rate": 0.00014266666666666667,
690
+ "loss": 0.6114,
691
+ "step": 107
692
+ },
693
+ {
694
+ "epoch": 0.32,
695
+ "learning_rate": 0.000144,
696
+ "loss": 0.6915,
697
+ "step": 108
698
+ },
699
+ {
700
+ "epoch": 0.33,
701
+ "learning_rate": 0.00014533333333333333,
702
+ "loss": 0.5593,
703
+ "step": 109
704
+ },
705
+ {
706
+ "epoch": 0.33,
707
+ "learning_rate": 0.00014666666666666666,
708
+ "loss": 0.6069,
709
+ "step": 110
710
+ },
711
+ {
712
+ "epoch": 0.33,
713
+ "learning_rate": 0.000148,
714
+ "loss": 0.4814,
715
+ "step": 111
716
+ },
717
+ {
718
+ "epoch": 0.34,
719
+ "learning_rate": 0.00014933333333333335,
720
+ "loss": 0.349,
721
+ "step": 112
722
+ },
723
+ {
724
+ "epoch": 0.34,
725
+ "learning_rate": 0.00015066666666666668,
726
+ "loss": 0.4876,
727
+ "step": 113
728
+ },
729
+ {
730
+ "epoch": 0.34,
731
+ "learning_rate": 0.000152,
732
+ "loss": 0.7599,
733
+ "step": 114
734
+ },
735
+ {
736
+ "epoch": 0.34,
737
+ "learning_rate": 0.00015333333333333334,
738
+ "loss": 0.5611,
739
+ "step": 115
740
+ },
741
+ {
742
+ "epoch": 0.35,
743
+ "learning_rate": 0.00015466666666666667,
744
+ "loss": 0.4964,
745
+ "step": 116
746
+ },
747
+ {
748
+ "epoch": 0.35,
749
+ "learning_rate": 0.00015600000000000002,
750
+ "loss": 0.6322,
751
+ "step": 117
752
+ },
753
+ {
754
+ "epoch": 0.35,
755
+ "learning_rate": 0.00015733333333333333,
756
+ "loss": 0.6048,
757
+ "step": 118
758
+ },
759
+ {
760
+ "epoch": 0.36,
761
+ "learning_rate": 0.00015866666666666668,
762
+ "loss": 0.4281,
763
+ "step": 119
764
+ },
765
+ {
766
+ "epoch": 0.36,
767
+ "learning_rate": 0.00016,
768
+ "loss": 0.5511,
769
+ "step": 120
770
+ },
771
+ {
772
+ "epoch": 0.36,
773
+ "eval_loss": 0.5242847800254822,
774
+ "eval_runtime": 19.6845,
775
+ "eval_samples_per_second": 82.756,
776
+ "eval_steps_per_second": 41.403,
777
+ "step": 120
778
+ },
779
+ {
780
+ "epoch": 0.36,
781
+ "learning_rate": 0.00016133333333333334,
782
+ "loss": 0.3825,
783
+ "step": 121
784
+ },
785
+ {
786
+ "epoch": 0.37,
787
+ "learning_rate": 0.00016266666666666667,
788
+ "loss": 0.5735,
789
+ "step": 122
790
+ },
791
+ {
792
+ "epoch": 0.37,
793
+ "learning_rate": 0.000164,
794
+ "loss": 0.5507,
795
+ "step": 123
796
+ },
797
+ {
798
+ "epoch": 0.37,
799
+ "learning_rate": 0.00016533333333333333,
800
+ "loss": 0.6579,
801
+ "step": 124
802
+ },
803
+ {
804
+ "epoch": 0.37,
805
+ "learning_rate": 0.0001666666666666667,
806
+ "loss": 0.6705,
807
+ "step": 125
808
+ },
809
+ {
810
+ "epoch": 0.38,
811
+ "learning_rate": 0.000168,
812
+ "loss": 0.647,
813
+ "step": 126
814
+ },
815
+ {
816
+ "epoch": 0.38,
817
+ "learning_rate": 0.00016933333333333335,
818
+ "loss": 0.5078,
819
+ "step": 127
820
+ },
821
+ {
822
+ "epoch": 0.38,
823
+ "learning_rate": 0.00017066666666666668,
824
+ "loss": 0.6334,
825
+ "step": 128
826
+ },
827
+ {
828
+ "epoch": 0.39,
829
+ "learning_rate": 0.000172,
830
+ "loss": 0.5245,
831
+ "step": 129
832
+ },
833
+ {
834
+ "epoch": 0.39,
835
+ "learning_rate": 0.00017333333333333334,
836
+ "loss": 0.6218,
837
+ "step": 130
838
+ },
839
+ {
840
+ "epoch": 0.39,
841
+ "learning_rate": 0.00017466666666666667,
842
+ "loss": 0.5513,
843
+ "step": 131
844
+ },
845
+ {
846
+ "epoch": 0.4,
847
+ "learning_rate": 0.00017600000000000002,
848
+ "loss": 0.6845,
849
+ "step": 132
850
+ },
851
+ {
852
+ "epoch": 0.4,
853
+ "learning_rate": 0.00017733333333333335,
854
+ "loss": 0.6162,
855
+ "step": 133
856
+ },
857
+ {
858
+ "epoch": 0.4,
859
+ "learning_rate": 0.00017866666666666668,
860
+ "loss": 0.4964,
861
+ "step": 134
862
+ },
863
+ {
864
+ "epoch": 0.4,
865
+ "learning_rate": 0.00018,
866
+ "loss": 0.753,
867
+ "step": 135
868
+ },
869
+ {
870
+ "epoch": 0.41,
871
+ "learning_rate": 0.00018133333333333334,
872
+ "loss": 0.4971,
873
+ "step": 136
874
+ },
875
+ {
876
+ "epoch": 0.41,
877
+ "learning_rate": 0.00018266666666666667,
878
+ "loss": 0.4545,
879
+ "step": 137
880
+ },
881
+ {
882
+ "epoch": 0.41,
883
+ "learning_rate": 0.00018400000000000003,
884
+ "loss": 0.455,
885
+ "step": 138
886
+ },
887
+ {
888
+ "epoch": 0.42,
889
+ "learning_rate": 0.00018533333333333333,
890
+ "loss": 0.5624,
891
+ "step": 139
892
+ },
893
+ {
894
+ "epoch": 0.42,
895
+ "learning_rate": 0.0001866666666666667,
896
+ "loss": 0.5466,
897
+ "step": 140
898
+ },
899
+ {
900
+ "epoch": 0.42,
901
+ "eval_loss": 0.5101627707481384,
902
+ "eval_runtime": 19.7076,
903
+ "eval_samples_per_second": 82.658,
904
+ "eval_steps_per_second": 41.355,
905
+ "step": 140
906
+ },
907
+ {
908
+ "epoch": 0.42,
909
+ "learning_rate": 0.000188,
910
+ "loss": 0.5263,
911
+ "step": 141
912
+ },
913
+ {
914
+ "epoch": 0.43,
915
+ "learning_rate": 0.00018933333333333335,
916
+ "loss": 0.6072,
917
+ "step": 142
918
+ },
919
+ {
920
+ "epoch": 0.43,
921
+ "learning_rate": 0.00019066666666666668,
922
+ "loss": 0.6378,
923
+ "step": 143
924
+ },
925
+ {
926
+ "epoch": 0.43,
927
+ "learning_rate": 0.000192,
928
+ "loss": 0.5414,
929
+ "step": 144
930
+ },
931
+ {
932
+ "epoch": 0.43,
933
+ "learning_rate": 0.00019333333333333333,
934
+ "loss": 0.6037,
935
+ "step": 145
936
+ },
937
+ {
938
+ "epoch": 0.44,
939
+ "learning_rate": 0.0001946666666666667,
940
+ "loss": 0.4801,
941
+ "step": 146
942
+ },
943
+ {
944
+ "epoch": 0.44,
945
+ "learning_rate": 0.000196,
946
+ "loss": 0.6265,
947
+ "step": 147
948
+ },
949
+ {
950
+ "epoch": 0.44,
951
+ "learning_rate": 0.00019733333333333335,
952
+ "loss": 0.6518,
953
+ "step": 148
954
+ },
955
+ {
956
+ "epoch": 0.45,
957
+ "learning_rate": 0.00019866666666666668,
958
+ "loss": 0.5443,
959
+ "step": 149
960
+ },
961
+ {
962
+ "epoch": 0.45,
963
+ "learning_rate": 0.0002,
964
+ "loss": 0.5715,
965
+ "step": 150
966
+ },
967
+ {
968
+ "epoch": 0.45,
969
+ "learning_rate": 0.00020133333333333334,
970
+ "loss": 0.6174,
971
+ "step": 151
972
+ },
973
+ {
974
+ "epoch": 0.46,
975
+ "learning_rate": 0.0002026666666666667,
976
+ "loss": 0.5013,
977
+ "step": 152
978
+ },
979
+ {
980
+ "epoch": 0.46,
981
+ "learning_rate": 0.00020400000000000003,
982
+ "loss": 0.5018,
983
+ "step": 153
984
+ },
985
+ {
986
+ "epoch": 0.46,
987
+ "learning_rate": 0.00020533333333333333,
988
+ "loss": 0.4345,
989
+ "step": 154
990
+ },
991
+ {
992
+ "epoch": 0.46,
993
+ "learning_rate": 0.00020666666666666668,
994
+ "loss": 0.5074,
995
+ "step": 155
996
+ },
997
+ {
998
+ "epoch": 0.47,
999
+ "learning_rate": 0.00020800000000000001,
1000
+ "loss": 0.5118,
1001
+ "step": 156
1002
+ },
1003
+ {
1004
+ "epoch": 0.47,
1005
+ "learning_rate": 0.00020933333333333334,
1006
+ "loss": 0.6067,
1007
+ "step": 157
1008
+ },
1009
+ {
1010
+ "epoch": 0.47,
1011
+ "learning_rate": 0.00021066666666666665,
1012
+ "loss": 0.7615,
1013
+ "step": 158
1014
+ },
1015
+ {
1016
+ "epoch": 0.48,
1017
+ "learning_rate": 0.00021200000000000003,
1018
+ "loss": 0.4524,
1019
+ "step": 159
1020
+ },
1021
+ {
1022
+ "epoch": 0.48,
1023
+ "learning_rate": 0.00021333333333333333,
1024
+ "loss": 0.4395,
1025
+ "step": 160
1026
+ },
1027
+ {
1028
+ "epoch": 0.48,
1029
+ "eval_loss": 0.5064823627471924,
1030
+ "eval_runtime": 19.6784,
1031
+ "eval_samples_per_second": 82.781,
1032
+ "eval_steps_per_second": 41.416,
1033
+ "step": 160
1034
+ },
1035
+ {
1036
+ "epoch": 0.48,
1037
+ "learning_rate": 0.00021466666666666666,
1038
+ "loss": 0.3767,
1039
+ "step": 161
1040
+ },
1041
+ {
1042
+ "epoch": 0.49,
1043
+ "learning_rate": 0.00021600000000000002,
1044
+ "loss": 0.4539,
1045
+ "step": 162
1046
+ },
1047
+ {
1048
+ "epoch": 0.49,
1049
+ "learning_rate": 0.00021733333333333335,
1050
+ "loss": 0.553,
1051
+ "step": 163
1052
+ },
1053
+ {
1054
+ "epoch": 0.49,
1055
+ "learning_rate": 0.00021866666666666665,
1056
+ "loss": 0.5605,
1057
+ "step": 164
1058
+ },
1059
+ {
1060
+ "epoch": 0.49,
1061
+ "learning_rate": 0.00022000000000000003,
1062
+ "loss": 0.5756,
1063
+ "step": 165
1064
+ },
1065
+ {
1066
+ "epoch": 0.5,
1067
+ "learning_rate": 0.00022133333333333334,
1068
+ "loss": 0.5019,
1069
+ "step": 166
1070
+ },
1071
+ {
1072
+ "epoch": 0.5,
1073
+ "learning_rate": 0.00022266666666666667,
1074
+ "loss": 0.6492,
1075
+ "step": 167
1076
+ },
1077
+ {
1078
+ "epoch": 0.5,
1079
+ "learning_rate": 0.00022400000000000002,
1080
+ "loss": 0.4588,
1081
+ "step": 168
1082
+ },
1083
+ {
1084
+ "epoch": 0.51,
1085
+ "learning_rate": 0.00022533333333333335,
1086
+ "loss": 0.465,
1087
+ "step": 169
1088
+ },
1089
+ {
1090
+ "epoch": 0.51,
1091
+ "learning_rate": 0.00022666666666666668,
1092
+ "loss": 0.6886,
1093
+ "step": 170
1094
+ },
1095
+ {
1096
+ "epoch": 0.51,
1097
+ "learning_rate": 0.00022799999999999999,
1098
+ "loss": 0.6053,
1099
+ "step": 171
1100
+ },
1101
+ {
1102
+ "epoch": 0.51,
1103
+ "learning_rate": 0.00022933333333333334,
1104
+ "loss": 0.5904,
1105
+ "step": 172
1106
+ },
1107
+ {
1108
+ "epoch": 0.52,
1109
+ "learning_rate": 0.00023066666666666667,
1110
+ "loss": 0.566,
1111
+ "step": 173
1112
+ },
1113
+ {
1114
+ "epoch": 0.52,
1115
+ "learning_rate": 0.000232,
1116
+ "loss": 0.6075,
1117
+ "step": 174
1118
+ },
1119
+ {
1120
+ "epoch": 0.52,
1121
+ "learning_rate": 0.00023333333333333336,
1122
+ "loss": 0.5057,
1123
+ "step": 175
1124
+ },
1125
+ {
1126
+ "epoch": 0.53,
1127
+ "learning_rate": 0.0002346666666666667,
1128
+ "loss": 0.463,
1129
+ "step": 176
1130
+ },
1131
+ {
1132
+ "epoch": 0.53,
1133
+ "learning_rate": 0.000236,
1134
+ "loss": 0.6253,
1135
+ "step": 177
1136
+ },
1137
+ {
1138
+ "epoch": 0.53,
1139
+ "learning_rate": 0.00023733333333333337,
1140
+ "loss": 0.4351,
1141
+ "step": 178
1142
+ },
1143
+ {
1144
+ "epoch": 0.54,
1145
+ "learning_rate": 0.00023866666666666668,
1146
+ "loss": 0.4774,
1147
+ "step": 179
1148
+ },
1149
+ {
1150
+ "epoch": 0.54,
1151
+ "learning_rate": 0.00024,
1152
+ "loss": 0.6854,
1153
+ "step": 180
1154
+ },
1155
+ {
1156
+ "epoch": 0.54,
1157
+ "eval_loss": 0.49708327651023865,
1158
+ "eval_runtime": 19.695,
1159
+ "eval_samples_per_second": 82.711,
1160
+ "eval_steps_per_second": 41.381,
1161
+ "step": 180
1162
+ },
1163
+ {
1164
+ "epoch": 0.54,
1165
+ "learning_rate": 0.00024133333333333336,
1166
+ "loss": 0.6335,
1167
+ "step": 181
1168
+ },
1169
+ {
1170
+ "epoch": 0.54,
1171
+ "learning_rate": 0.0002426666666666667,
1172
+ "loss": 0.4519,
1173
+ "step": 182
1174
+ },
1175
+ {
1176
+ "epoch": 0.55,
1177
+ "learning_rate": 0.000244,
1178
+ "loss": 0.5676,
1179
+ "step": 183
1180
+ },
1181
+ {
1182
+ "epoch": 0.55,
1183
+ "learning_rate": 0.00024533333333333335,
1184
+ "loss": 0.5759,
1185
+ "step": 184
1186
+ },
1187
+ {
1188
+ "epoch": 0.55,
1189
+ "learning_rate": 0.0002466666666666667,
1190
+ "loss": 0.4579,
1191
+ "step": 185
1192
+ },
1193
+ {
1194
+ "epoch": 0.56,
1195
+ "learning_rate": 0.000248,
1196
+ "loss": 0.8357,
1197
+ "step": 186
1198
+ },
1199
+ {
1200
+ "epoch": 0.56,
1201
+ "learning_rate": 0.00024933333333333334,
1202
+ "loss": 0.5032,
1203
+ "step": 187
1204
+ },
1205
+ {
1206
+ "epoch": 0.56,
1207
+ "learning_rate": 0.00025066666666666667,
1208
+ "loss": 0.4588,
1209
+ "step": 188
1210
+ },
1211
+ {
1212
+ "epoch": 0.57,
1213
+ "learning_rate": 0.000252,
1214
+ "loss": 0.8308,
1215
+ "step": 189
1216
+ },
1217
+ {
1218
+ "epoch": 0.57,
1219
+ "learning_rate": 0.00025333333333333333,
1220
+ "loss": 0.4694,
1221
+ "step": 190
1222
+ },
1223
+ {
1224
+ "epoch": 0.57,
1225
+ "learning_rate": 0.0002546666666666667,
1226
+ "loss": 0.4331,
1227
+ "step": 191
1228
+ },
1229
+ {
1230
+ "epoch": 0.57,
1231
+ "learning_rate": 0.00025600000000000004,
1232
+ "loss": 0.4927,
1233
+ "step": 192
1234
+ },
1235
+ {
1236
+ "epoch": 0.58,
1237
+ "learning_rate": 0.0002573333333333333,
1238
+ "loss": 0.5314,
1239
+ "step": 193
1240
+ },
1241
+ {
1242
+ "epoch": 0.58,
1243
+ "learning_rate": 0.00025866666666666665,
1244
+ "loss": 0.7151,
1245
+ "step": 194
1246
+ },
1247
+ {
1248
+ "epoch": 0.58,
1249
+ "learning_rate": 0.00026000000000000003,
1250
+ "loss": 0.5414,
1251
+ "step": 195
1252
+ },
1253
+ {
1254
+ "epoch": 0.59,
1255
+ "learning_rate": 0.00026133333333333336,
1256
+ "loss": 0.5041,
1257
+ "step": 196
1258
+ },
1259
+ {
1260
+ "epoch": 0.59,
1261
+ "learning_rate": 0.00026266666666666664,
1262
+ "loss": 0.7378,
1263
+ "step": 197
1264
+ },
1265
+ {
1266
+ "epoch": 0.59,
1267
+ "learning_rate": 0.000264,
1268
+ "loss": 0.4902,
1269
+ "step": 198
1270
+ },
1271
+ {
1272
+ "epoch": 0.6,
1273
+ "learning_rate": 0.00026533333333333335,
1274
+ "loss": 0.5758,
1275
+ "step": 199
1276
+ },
1277
+ {
1278
+ "epoch": 0.6,
1279
+ "learning_rate": 0.0002666666666666667,
1280
+ "loss": 0.7326,
1281
+ "step": 200
1282
+ },
1283
+ {
1284
+ "epoch": 0.6,
1285
+ "eval_loss": 0.5149964690208435,
1286
+ "eval_runtime": 19.7002,
1287
+ "eval_samples_per_second": 82.69,
1288
+ "eval_steps_per_second": 41.37,
1289
+ "step": 200
1290
+ },
1291
+ {
1292
+ "epoch": 0.6,
1293
+ "learning_rate": 0.000268,
1294
+ "loss": 0.7322,
1295
+ "step": 201
1296
+ },
1297
+ {
1298
+ "epoch": 0.6,
1299
+ "learning_rate": 0.00026933333333333334,
1300
+ "loss": 0.5464,
1301
+ "step": 202
1302
+ },
1303
+ {
1304
+ "epoch": 0.61,
1305
+ "learning_rate": 0.00027066666666666667,
1306
+ "loss": 0.6081,
1307
+ "step": 203
1308
+ },
1309
+ {
1310
+ "epoch": 0.61,
1311
+ "learning_rate": 0.00027200000000000005,
1312
+ "loss": 0.5572,
1313
+ "step": 204
1314
+ },
1315
+ {
1316
+ "epoch": 0.61,
1317
+ "learning_rate": 0.00027333333333333333,
1318
+ "loss": 0.4734,
1319
+ "step": 205
1320
+ },
1321
+ {
1322
+ "epoch": 0.62,
1323
+ "learning_rate": 0.00027466666666666666,
1324
+ "loss": 0.3858,
1325
+ "step": 206
1326
+ },
1327
+ {
1328
+ "epoch": 0.62,
1329
+ "learning_rate": 0.000276,
1330
+ "loss": 0.5716,
1331
+ "step": 207
1332
+ },
1333
+ {
1334
+ "epoch": 0.62,
1335
+ "learning_rate": 0.00027733333333333337,
1336
+ "loss": 0.6245,
1337
+ "step": 208
1338
+ },
1339
+ {
1340
+ "epoch": 0.63,
1341
+ "learning_rate": 0.0002786666666666667,
1342
+ "loss": 0.6528,
1343
+ "step": 209
1344
+ },
1345
+ {
1346
+ "epoch": 0.63,
1347
+ "learning_rate": 0.00028,
1348
+ "loss": 0.6356,
1349
+ "step": 210
1350
+ },
1351
+ {
1352
+ "epoch": 0.63,
1353
+ "learning_rate": 0.00028133333333333336,
1354
+ "loss": 0.5439,
1355
+ "step": 211
1356
+ },
1357
+ {
1358
+ "epoch": 0.63,
1359
+ "learning_rate": 0.0002826666666666667,
1360
+ "loss": 0.7304,
1361
+ "step": 212
1362
+ },
1363
+ {
1364
+ "epoch": 0.64,
1365
+ "learning_rate": 0.000284,
1366
+ "loss": 0.4229,
1367
+ "step": 213
1368
+ },
1369
+ {
1370
+ "epoch": 0.64,
1371
+ "learning_rate": 0.00028533333333333335,
1372
+ "loss": 0.6272,
1373
+ "step": 214
1374
+ },
1375
+ {
1376
+ "epoch": 0.64,
1377
+ "learning_rate": 0.0002866666666666667,
1378
+ "loss": 0.6347,
1379
+ "step": 215
1380
+ },
1381
+ {
1382
+ "epoch": 0.65,
1383
+ "learning_rate": 0.000288,
1384
+ "loss": 0.5148,
1385
+ "step": 216
1386
+ },
1387
+ {
1388
+ "epoch": 0.65,
1389
+ "learning_rate": 0.0002893333333333334,
1390
+ "loss": 0.5562,
1391
+ "step": 217
1392
+ },
1393
+ {
1394
+ "epoch": 0.65,
1395
+ "learning_rate": 0.00029066666666666667,
1396
+ "loss": 0.5406,
1397
+ "step": 218
1398
+ },
1399
+ {
1400
+ "epoch": 0.66,
1401
+ "learning_rate": 0.000292,
1402
+ "loss": 0.5403,
1403
+ "step": 219
1404
+ },
1405
+ {
1406
+ "epoch": 0.66,
1407
+ "learning_rate": 0.0002933333333333333,
1408
+ "loss": 0.8204,
1409
+ "step": 220
1410
+ },
1411
+ {
1412
+ "epoch": 0.66,
1413
+ "eval_loss": 0.5008006691932678,
1414
+ "eval_runtime": 19.7142,
1415
+ "eval_samples_per_second": 82.631,
1416
+ "eval_steps_per_second": 41.341,
1417
+ "step": 220
1418
+ },
1419
+ {
1420
+ "epoch": 0.66,
1421
+ "learning_rate": 0.0002946666666666667,
1422
+ "loss": 0.5589,
1423
+ "step": 221
1424
+ },
1425
+ {
1426
+ "epoch": 0.66,
1427
+ "learning_rate": 0.000296,
1428
+ "loss": 0.5268,
1429
+ "step": 222
1430
+ },
1431
+ {
1432
+ "epoch": 0.67,
1433
+ "learning_rate": 0.0002973333333333333,
1434
+ "loss": 0.4463,
1435
+ "step": 223
1436
+ },
1437
+ {
1438
+ "epoch": 0.67,
1439
+ "learning_rate": 0.0002986666666666667,
1440
+ "loss": 0.4867,
1441
+ "step": 224
1442
+ },
1443
+ {
1444
+ "epoch": 0.67,
1445
+ "learning_rate": 0.00030000000000000003,
1446
+ "loss": 0.4553,
1447
+ "step": 225
1448
+ },
1449
+ {
1450
+ "epoch": 0.68,
1451
+ "learning_rate": 0.00030133333333333336,
1452
+ "loss": 0.673,
1453
+ "step": 226
1454
+ },
1455
+ {
1456
+ "epoch": 0.68,
1457
+ "learning_rate": 0.0003026666666666667,
1458
+ "loss": 0.6834,
1459
+ "step": 227
1460
+ },
1461
+ {
1462
+ "epoch": 0.68,
1463
+ "learning_rate": 0.000304,
1464
+ "loss": 0.6557,
1465
+ "step": 228
1466
+ },
1467
+ {
1468
+ "epoch": 0.69,
1469
+ "learning_rate": 0.00030533333333333335,
1470
+ "loss": 0.5877,
1471
+ "step": 229
1472
+ },
1473
+ {
1474
+ "epoch": 0.69,
1475
+ "learning_rate": 0.0003066666666666667,
1476
+ "loss": 0.6514,
1477
+ "step": 230
1478
+ },
1479
+ {
1480
+ "epoch": 0.69,
1481
+ "learning_rate": 0.000308,
1482
+ "loss": 0.6256,
1483
+ "step": 231
1484
+ },
1485
+ {
1486
+ "epoch": 0.69,
1487
+ "learning_rate": 0.00030933333333333334,
1488
+ "loss": 0.3928,
1489
+ "step": 232
1490
+ },
1491
+ {
1492
+ "epoch": 0.7,
1493
+ "learning_rate": 0.00031066666666666666,
1494
+ "loss": 0.5906,
1495
+ "step": 233
1496
+ },
1497
+ {
1498
+ "epoch": 0.7,
1499
+ "learning_rate": 0.00031200000000000005,
1500
+ "loss": 0.5967,
1501
+ "step": 234
1502
+ },
1503
+ {
1504
+ "epoch": 0.7,
1505
+ "learning_rate": 0.0003133333333333333,
1506
+ "loss": 0.5324,
1507
+ "step": 235
1508
+ },
1509
+ {
1510
+ "epoch": 0.71,
1511
+ "learning_rate": 0.00031466666666666665,
1512
+ "loss": 0.4432,
1513
+ "step": 236
1514
+ },
1515
+ {
1516
+ "epoch": 0.71,
1517
+ "learning_rate": 0.00031600000000000004,
1518
+ "loss": 0.4914,
1519
+ "step": 237
1520
+ },
1521
+ {
1522
+ "epoch": 0.71,
1523
+ "learning_rate": 0.00031733333333333337,
1524
+ "loss": 0.7376,
1525
+ "step": 238
1526
+ },
1527
+ {
1528
+ "epoch": 0.72,
1529
+ "learning_rate": 0.00031866666666666664,
1530
+ "loss": 0.5002,
1531
+ "step": 239
1532
+ },
1533
+ {
1534
+ "epoch": 0.72,
1535
+ "learning_rate": 0.00032,
1536
+ "loss": 0.6009,
1537
+ "step": 240
1538
+ },
1539
+ {
1540
+ "epoch": 0.72,
1541
+ "eval_loss": 0.4971613585948944,
1542
+ "eval_runtime": 19.7057,
1543
+ "eval_samples_per_second": 82.666,
1544
+ "eval_steps_per_second": 41.359,
1545
+ "step": 240
1546
+ },
1547
+ {
1548
+ "epoch": 0.72,
1549
+ "learning_rate": 0.00032133333333333336,
1550
+ "loss": 0.3989,
1551
+ "step": 241
1552
+ },
1553
+ {
1554
+ "epoch": 0.72,
1555
+ "learning_rate": 0.0003226666666666667,
1556
+ "loss": 0.5301,
1557
+ "step": 242
1558
+ },
1559
+ {
1560
+ "epoch": 0.73,
1561
+ "learning_rate": 0.000324,
1562
+ "loss": 0.5951,
1563
+ "step": 243
1564
+ },
1565
+ {
1566
+ "epoch": 0.73,
1567
+ "learning_rate": 0.00032533333333333334,
1568
+ "loss": 0.55,
1569
+ "step": 244
1570
+ },
1571
+ {
1572
+ "epoch": 0.73,
1573
+ "learning_rate": 0.0003266666666666667,
1574
+ "loss": 0.5858,
1575
+ "step": 245
1576
+ },
1577
+ {
1578
+ "epoch": 0.74,
1579
+ "learning_rate": 0.000328,
1580
+ "loss": 0.452,
1581
+ "step": 246
1582
+ },
1583
+ {
1584
+ "epoch": 0.74,
1585
+ "learning_rate": 0.00032933333333333333,
1586
+ "loss": 0.4798,
1587
+ "step": 247
1588
+ },
1589
+ {
1590
+ "epoch": 0.74,
1591
+ "learning_rate": 0.00033066666666666666,
1592
+ "loss": 0.5152,
1593
+ "step": 248
1594
+ },
1595
+ {
1596
+ "epoch": 0.75,
1597
+ "learning_rate": 0.000332,
1598
+ "loss": 0.4678,
1599
+ "step": 249
1600
+ },
1601
+ {
1602
+ "epoch": 0.75,
1603
+ "learning_rate": 0.0003333333333333334,
1604
+ "loss": 0.8398,
1605
+ "step": 250
1606
+ },
1607
+ {
1608
+ "epoch": 0.75,
1609
+ "learning_rate": 0.0003346666666666667,
1610
+ "loss": 0.4644,
1611
+ "step": 251
1612
+ },
1613
+ {
1614
+ "epoch": 0.75,
1615
+ "learning_rate": 0.000336,
1616
+ "loss": 0.6338,
1617
+ "step": 252
1618
+ },
1619
+ {
1620
+ "epoch": 0.76,
1621
+ "learning_rate": 0.00033733333333333337,
1622
+ "loss": 0.6207,
1623
+ "step": 253
1624
+ },
1625
+ {
1626
+ "epoch": 0.76,
1627
+ "learning_rate": 0.0003386666666666667,
1628
+ "loss": 0.6672,
1629
+ "step": 254
1630
+ },
1631
+ {
1632
+ "epoch": 0.76,
1633
+ "learning_rate": 0.00034,
1634
+ "loss": 0.6411,
1635
+ "step": 255
1636
+ },
1637
+ {
1638
+ "epoch": 0.77,
1639
+ "learning_rate": 0.00034133333333333335,
1640
+ "loss": 0.37,
1641
+ "step": 256
1642
+ },
1643
+ {
1644
+ "epoch": 0.77,
1645
+ "learning_rate": 0.0003426666666666667,
1646
+ "loss": 0.3361,
1647
+ "step": 257
1648
+ },
1649
+ {
1650
+ "epoch": 0.77,
1651
+ "learning_rate": 0.000344,
1652
+ "loss": 0.4482,
1653
+ "step": 258
1654
+ },
1655
+ {
1656
+ "epoch": 0.78,
1657
+ "learning_rate": 0.00034533333333333334,
1658
+ "loss": 0.7842,
1659
+ "step": 259
1660
+ },
1661
+ {
1662
+ "epoch": 0.78,
1663
+ "learning_rate": 0.00034666666666666667,
1664
+ "loss": 0.4471,
1665
+ "step": 260
1666
+ },
1667
+ {
1668
+ "epoch": 0.78,
1669
+ "eval_loss": 0.4944275915622711,
1670
+ "eval_runtime": 19.6961,
1671
+ "eval_samples_per_second": 82.707,
1672
+ "eval_steps_per_second": 41.379,
1673
+ "step": 260
1674
+ },
1675
+ {
1676
+ "epoch": 0.78,
1677
+ "learning_rate": 0.000348,
1678
+ "loss": 0.5071,
1679
+ "step": 261
1680
+ },
1681
+ {
1682
+ "epoch": 0.78,
1683
+ "learning_rate": 0.00034933333333333333,
1684
+ "loss": 0.5048,
1685
+ "step": 262
1686
+ },
1687
+ {
1688
+ "epoch": 0.79,
1689
+ "learning_rate": 0.0003506666666666667,
1690
+ "loss": 0.5687,
1691
+ "step": 263
1692
+ },
1693
+ {
1694
+ "epoch": 0.79,
1695
+ "learning_rate": 0.00035200000000000005,
1696
+ "loss": 0.5559,
1697
+ "step": 264
1698
+ },
1699
+ {
1700
+ "epoch": 0.79,
1701
+ "learning_rate": 0.0003533333333333333,
1702
+ "loss": 0.4472,
1703
+ "step": 265
1704
+ },
1705
+ {
1706
+ "epoch": 0.8,
1707
+ "learning_rate": 0.0003546666666666667,
1708
+ "loss": 0.4627,
1709
+ "step": 266
1710
+ },
1711
+ {
1712
+ "epoch": 0.8,
1713
+ "learning_rate": 0.00035600000000000003,
1714
+ "loss": 0.5967,
1715
+ "step": 267
1716
+ },
1717
+ {
1718
+ "epoch": 0.8,
1719
+ "learning_rate": 0.00035733333333333336,
1720
+ "loss": 0.5931,
1721
+ "step": 268
1722
+ },
1723
+ {
1724
+ "epoch": 0.81,
1725
+ "learning_rate": 0.00035866666666666664,
1726
+ "loss": 0.6736,
1727
+ "step": 269
1728
+ },
1729
+ {
1730
+ "epoch": 0.81,
1731
+ "learning_rate": 0.00036,
1732
+ "loss": 0.5897,
1733
+ "step": 270
1734
+ },
1735
+ {
1736
+ "epoch": 0.81,
1737
+ "learning_rate": 0.00036133333333333335,
1738
+ "loss": 0.573,
1739
+ "step": 271
1740
+ },
1741
+ {
1742
+ "epoch": 0.81,
1743
+ "learning_rate": 0.0003626666666666667,
1744
+ "loss": 0.4944,
1745
+ "step": 272
1746
+ },
1747
+ {
1748
+ "epoch": 0.82,
1749
+ "learning_rate": 0.000364,
1750
+ "loss": 0.5639,
1751
+ "step": 273
1752
+ },
1753
+ {
1754
+ "epoch": 0.82,
1755
+ "learning_rate": 0.00036533333333333334,
1756
+ "loss": 0.5228,
1757
+ "step": 274
1758
+ },
1759
+ {
1760
+ "epoch": 0.82,
1761
+ "learning_rate": 0.00036666666666666667,
1762
+ "loss": 0.4963,
1763
+ "step": 275
1764
+ },
1765
+ {
1766
+ "epoch": 0.83,
1767
+ "learning_rate": 0.00036800000000000005,
1768
+ "loss": 0.4877,
1769
+ "step": 276
1770
+ },
1771
+ {
1772
+ "epoch": 0.83,
1773
+ "learning_rate": 0.00036933333333333333,
1774
+ "loss": 0.5022,
1775
+ "step": 277
1776
+ },
1777
+ {
1778
+ "epoch": 0.83,
1779
+ "learning_rate": 0.00037066666666666666,
1780
+ "loss": 0.4956,
1781
+ "step": 278
1782
+ },
1783
+ {
1784
+ "epoch": 0.84,
1785
+ "learning_rate": 0.00037200000000000004,
1786
+ "loss": 0.4455,
1787
+ "step": 279
1788
+ },
1789
+ {
1790
+ "epoch": 0.84,
1791
+ "learning_rate": 0.0003733333333333334,
1792
+ "loss": 0.5934,
1793
+ "step": 280
1794
+ },
1795
+ {
1796
+ "epoch": 0.84,
1797
+ "eval_loss": 0.5145900249481201,
1798
+ "eval_runtime": 19.7148,
1799
+ "eval_samples_per_second": 82.628,
1800
+ "eval_steps_per_second": 41.34,
1801
+ "step": 280
1802
+ },
1803
+ {
1804
+ "epoch": 0.84,
1805
+ "learning_rate": 0.0003746666666666667,
1806
+ "loss": 0.5771,
1807
+ "step": 281
1808
+ },
1809
+ {
1810
+ "epoch": 0.84,
1811
+ "learning_rate": 0.000376,
1812
+ "loss": 0.7037,
1813
+ "step": 282
1814
+ },
1815
+ {
1816
+ "epoch": 0.85,
1817
+ "learning_rate": 0.00037733333333333336,
1818
+ "loss": 0.586,
1819
+ "step": 283
1820
+ },
1821
+ {
1822
+ "epoch": 0.85,
1823
+ "learning_rate": 0.0003786666666666667,
1824
+ "loss": 0.6398,
1825
+ "step": 284
1826
+ },
1827
+ {
1828
+ "epoch": 0.85,
1829
+ "learning_rate": 0.00038,
1830
+ "loss": 0.4984,
1831
+ "step": 285
1832
+ },
1833
+ {
1834
+ "epoch": 0.86,
1835
+ "learning_rate": 0.00038133333333333335,
1836
+ "loss": 0.5042,
1837
+ "step": 286
1838
+ },
1839
+ {
1840
+ "epoch": 0.86,
1841
+ "learning_rate": 0.0003826666666666667,
1842
+ "loss": 0.5879,
1843
+ "step": 287
1844
+ },
1845
+ {
1846
+ "epoch": 0.86,
1847
+ "learning_rate": 0.000384,
1848
+ "loss": 0.5108,
1849
+ "step": 288
1850
+ },
1851
+ {
1852
+ "epoch": 0.87,
1853
+ "learning_rate": 0.0003853333333333334,
1854
+ "loss": 0.4034,
1855
+ "step": 289
1856
+ },
1857
+ {
1858
+ "epoch": 0.87,
1859
+ "learning_rate": 0.00038666666666666667,
1860
+ "loss": 0.5854,
1861
+ "step": 290
1862
+ },
1863
+ {
1864
+ "epoch": 0.87,
1865
+ "learning_rate": 0.000388,
1866
+ "loss": 0.6138,
1867
+ "step": 291
1868
+ },
1869
+ {
1870
+ "epoch": 0.87,
1871
+ "learning_rate": 0.0003893333333333334,
1872
+ "loss": 0.5932,
1873
+ "step": 292
1874
+ },
1875
+ {
1876
+ "epoch": 0.88,
1877
+ "learning_rate": 0.0003906666666666667,
1878
+ "loss": 0.4475,
1879
+ "step": 293
1880
+ },
1881
+ {
1882
+ "epoch": 0.88,
1883
+ "learning_rate": 0.000392,
1884
+ "loss": 0.615,
1885
+ "step": 294
1886
+ },
1887
+ {
1888
+ "epoch": 0.88,
1889
+ "learning_rate": 0.0003933333333333333,
1890
+ "loss": 0.7312,
1891
+ "step": 295
1892
+ },
1893
+ {
1894
+ "epoch": 0.89,
1895
+ "learning_rate": 0.0003946666666666667,
1896
+ "loss": 0.5778,
1897
+ "step": 296
1898
+ },
1899
+ {
1900
+ "epoch": 0.89,
1901
+ "learning_rate": 0.00039600000000000003,
1902
+ "loss": 0.5074,
1903
+ "step": 297
1904
+ },
1905
+ {
1906
+ "epoch": 0.89,
1907
+ "learning_rate": 0.00039733333333333336,
1908
+ "loss": 0.5557,
1909
+ "step": 298
1910
+ },
1911
+ {
1912
+ "epoch": 0.9,
1913
+ "learning_rate": 0.0003986666666666667,
1914
+ "loss": 0.5038,
1915
+ "step": 299
1916
+ },
1917
+ {
1918
+ "epoch": 0.9,
1919
+ "learning_rate": 0.0004,
1920
+ "loss": 0.6574,
1921
+ "step": 300
1922
+ },
1923
+ {
1924
+ "epoch": 0.9,
1925
+ "eval_loss": 0.5057099461555481,
1926
+ "eval_runtime": 19.7067,
1927
+ "eval_samples_per_second": 82.662,
1928
+ "eval_steps_per_second": 41.356,
1929
+ "step": 300
1930
+ },
1931
+ {
1932
+ "epoch": 0.9,
1933
+ "learning_rate": 0.0003999979972589652,
1934
+ "loss": 0.6309,
1935
+ "step": 301
1936
+ },
1937
+ {
1938
+ "epoch": 0.9,
1939
+ "learning_rate": 0.00039999198907597047,
1940
+ "loss": 0.65,
1941
+ "step": 302
1942
+ },
1943
+ {
1944
+ "epoch": 0.91,
1945
+ "learning_rate": 0.00039998197557134424,
1946
+ "loss": 0.4086,
1947
+ "step": 303
1948
+ },
1949
+ {
1950
+ "epoch": 0.91,
1951
+ "learning_rate": 0.00039996795694563096,
1952
+ "loss": 0.4373,
1953
+ "step": 304
1954
+ },
1955
+ {
1956
+ "epoch": 0.91,
1957
+ "learning_rate": 0.0003999499334795875,
1958
+ "loss": 0.5783,
1959
+ "step": 305
1960
+ },
1961
+ {
1962
+ "epoch": 0.92,
1963
+ "learning_rate": 0.0003999279055341771,
1964
+ "loss": 0.4066,
1965
+ "step": 306
1966
+ },
1967
+ {
1968
+ "epoch": 0.92,
1969
+ "learning_rate": 0.0003999018735505626,
1970
+ "loss": 0.4617,
1971
+ "step": 307
1972
+ },
1973
+ {
1974
+ "epoch": 0.92,
1975
+ "learning_rate": 0.0003998718380500971,
1976
+ "loss": 0.5894,
1977
+ "step": 308
1978
+ },
1979
+ {
1980
+ "epoch": 0.93,
1981
+ "learning_rate": 0.00039983779963431395,
1982
+ "loss": 0.5726,
1983
+ "step": 309
1984
+ },
1985
+ {
1986
+ "epoch": 0.93,
1987
+ "learning_rate": 0.00039979975898491447,
1988
+ "loss": 0.4642,
1989
+ "step": 310
1990
+ },
1991
+ {
1992
+ "epoch": 0.93,
1993
+ "learning_rate": 0.0003997577168637543,
1994
+ "loss": 0.5851,
1995
+ "step": 311
1996
+ },
1997
+ {
1998
+ "epoch": 0.93,
1999
+ "learning_rate": 0.00039971167411282835,
2000
+ "loss": 0.4258,
2001
+ "step": 312
2002
+ },
2003
+ {
2004
+ "epoch": 0.94,
2005
+ "learning_rate": 0.0003996616316542537,
2006
+ "loss": 0.3955,
2007
+ "step": 313
2008
+ },
2009
+ {
2010
+ "epoch": 0.94,
2011
+ "learning_rate": 0.00039960759049025105,
2012
+ "loss": 0.5344,
2013
+ "step": 314
2014
+ },
2015
+ {
2016
+ "epoch": 0.94,
2017
+ "learning_rate": 0.00039954955170312504,
2018
+ "loss": 0.6945,
2019
+ "step": 315
2020
+ },
2021
+ {
2022
+ "epoch": 0.95,
2023
+ "learning_rate": 0.00039948751645524236,
2024
+ "loss": 0.6328,
2025
+ "step": 316
2026
+ },
2027
+ {
2028
+ "epoch": 0.95,
2029
+ "learning_rate": 0.0003994214859890082,
2030
+ "loss": 0.5978,
2031
+ "step": 317
2032
+ },
2033
+ {
2034
+ "epoch": 0.95,
2035
+ "learning_rate": 0.00039935146162684205,
2036
+ "loss": 0.5626,
2037
+ "step": 318
2038
+ },
2039
+ {
2040
+ "epoch": 0.96,
2041
+ "learning_rate": 0.0003992774447711503,
2042
+ "loss": 0.4901,
2043
+ "step": 319
2044
+ },
2045
+ {
2046
+ "epoch": 0.96,
2047
+ "learning_rate": 0.000399199436904299,
2048
+ "loss": 0.4566,
2049
+ "step": 320
2050
+ },
2051
+ {
2052
+ "epoch": 0.96,
2053
+ "eval_loss": 0.487981915473938,
2054
+ "eval_runtime": 19.7019,
2055
+ "eval_samples_per_second": 82.682,
2056
+ "eval_steps_per_second": 41.366,
2057
+ "step": 320
2058
+ },
2059
+ {
2060
+ "epoch": 0.96,
2061
+ "learning_rate": 0.0003991174395885838,
2062
+ "loss": 0.5215,
2063
+ "step": 321
2064
+ },
2065
+ {
2066
+ "epoch": 0.96,
2067
+ "learning_rate": 0.0003990314544661984,
2068
+ "loss": 0.4068,
2069
+ "step": 322
2070
+ },
2071
+ {
2072
+ "epoch": 0.97,
2073
+ "learning_rate": 0.00039894148325920223,
2074
+ "loss": 0.4953,
2075
+ "step": 323
2076
+ },
2077
+ {
2078
+ "epoch": 0.97,
2079
+ "learning_rate": 0.0003988475277694856,
2080
+ "loss": 0.5265,
2081
+ "step": 324
2082
+ },
2083
+ {
2084
+ "epoch": 0.97,
2085
+ "learning_rate": 0.00039874958987873364,
2086
+ "loss": 0.4939,
2087
+ "step": 325
2088
+ },
2089
+ {
2090
+ "epoch": 0.98,
2091
+ "learning_rate": 0.00039864767154838864,
2092
+ "loss": 0.6296,
2093
+ "step": 326
2094
+ },
2095
+ {
2096
+ "epoch": 0.98,
2097
+ "learning_rate": 0.0003985417748196108,
2098
+ "loss": 0.7122,
2099
+ "step": 327
2100
+ },
2101
+ {
2102
+ "epoch": 0.98,
2103
+ "learning_rate": 0.00039843190181323746,
2104
+ "loss": 0.4771,
2105
+ "step": 328
2106
+ },
2107
+ {
2108
+ "epoch": 0.99,
2109
+ "learning_rate": 0.00039831805472974037,
2110
+ "loss": 0.3858,
2111
+ "step": 329
2112
+ },
2113
+ {
2114
+ "epoch": 0.99,
2115
+ "learning_rate": 0.00039820023584918174,
2116
+ "loss": 0.7111,
2117
+ "step": 330
2118
+ },
2119
+ {
2120
+ "epoch": 0.99,
2121
+ "learning_rate": 0.0003980784475311686,
2122
+ "loss": 0.5284,
2123
+ "step": 331
2124
+ },
2125
+ {
2126
+ "epoch": 0.99,
2127
+ "learning_rate": 0.00039795269221480574,
2128
+ "loss": 0.5413,
2129
+ "step": 332
2130
+ },
2131
+ {
2132
+ "epoch": 1.0,
2133
+ "learning_rate": 0.00039782297241864635,
2134
+ "loss": 0.6097,
2135
+ "step": 333
2136
+ },
2137
+ {
2138
+ "epoch": 1.0,
2139
+ "learning_rate": 0.000397689290740642,
2140
+ "loss": 0.4085,
2141
+ "step": 334
2142
+ },
2143
+ {
2144
+ "epoch": 1.0,
2145
+ "learning_rate": 0.00039755164985809063,
2146
+ "loss": 0.4514,
2147
+ "step": 335
2148
+ },
2149
+ {
2150
+ "epoch": 1.01,
2151
+ "learning_rate": 0.00039741005252758255,
2152
+ "loss": 0.6322,
2153
+ "step": 336
2154
+ },
2155
+ {
2156
+ "epoch": 1.01,
2157
+ "learning_rate": 0.0003972645015849457,
2158
+ "loss": 0.3739,
2159
+ "step": 337
2160
+ },
2161
+ {
2162
+ "epoch": 1.01,
2163
+ "learning_rate": 0.00039711499994518856,
2164
+ "loss": 0.6645,
2165
+ "step": 338
2166
+ },
2167
+ {
2168
+ "epoch": 1.01,
2169
+ "learning_rate": 0.00039696155060244166,
2170
+ "loss": 0.4806,
2171
+ "step": 339
2172
+ },
2173
+ {
2174
+ "epoch": 1.02,
2175
+ "learning_rate": 0.000396804156629898,
2176
+ "loss": 0.6119,
2177
+ "step": 340
2178
+ },
2179
+ {
2180
+ "epoch": 1.02,
2181
+ "eval_loss": 0.544212818145752,
2182
+ "eval_runtime": 19.6967,
2183
+ "eval_samples_per_second": 82.704,
2184
+ "eval_steps_per_second": 41.377,
2185
+ "step": 340
2186
+ },
2187
+ {
2188
+ "epoch": 1.02,
2189
+ "learning_rate": 0.0003966428211797514,
2190
+ "loss": 0.4978,
2191
+ "step": 341
2192
+ },
2193
+ {
2194
+ "epoch": 1.02,
2195
+ "learning_rate": 0.00039647754748313294,
2196
+ "loss": 0.4017,
2197
+ "step": 342
2198
+ },
2199
+ {
2200
+ "epoch": 1.03,
2201
+ "learning_rate": 0.0003963083388500469,
2202
+ "loss": 0.5658,
2203
+ "step": 343
2204
+ },
2205
+ {
2206
+ "epoch": 1.03,
2207
+ "learning_rate": 0.000396135198669304,
2208
+ "loss": 0.4991,
2209
+ "step": 344
2210
+ },
2211
+ {
2212
+ "epoch": 1.03,
2213
+ "learning_rate": 0.00039595813040845353,
2214
+ "loss": 0.6417,
2215
+ "step": 345
2216
+ },
2217
+ {
2218
+ "epoch": 1.04,
2219
+ "learning_rate": 0.0003957771376137144,
2220
+ "loss": 0.3614,
2221
+ "step": 346
2222
+ },
2223
+ {
2224
+ "epoch": 1.04,
2225
+ "learning_rate": 0.00039559222390990353,
2226
+ "loss": 0.5736,
2227
+ "step": 347
2228
+ },
2229
+ {
2230
+ "epoch": 1.04,
2231
+ "learning_rate": 0.00039540339300036344,
2232
+ "loss": 0.3924,
2233
+ "step": 348
2234
+ },
2235
+ {
2236
+ "epoch": 1.04,
2237
+ "learning_rate": 0.0003952106486668884,
2238
+ "loss": 0.5228,
2239
+ "step": 349
2240
+ },
2241
+ {
2242
+ "epoch": 1.05,
2243
+ "learning_rate": 0.00039501399476964805,
2244
+ "loss": 0.3474,
2245
+ "step": 350
2246
+ },
2247
+ {
2248
+ "epoch": 1.05,
2249
+ "learning_rate": 0.00039481343524711097,
2250
+ "loss": 0.5203,
2251
+ "step": 351
2252
+ },
2253
+ {
2254
+ "epoch": 1.05,
2255
+ "learning_rate": 0.00039460897411596477,
2256
+ "loss": 0.4705,
2257
+ "step": 352
2258
+ },
2259
+ {
2260
+ "epoch": 1.06,
2261
+ "learning_rate": 0.0003944006154710366,
2262
+ "loss": 0.4839,
2263
+ "step": 353
2264
+ },
2265
+ {
2266
+ "epoch": 1.06,
2267
+ "learning_rate": 0.0003941883634852104,
2268
+ "loss": 0.4044,
2269
+ "step": 354
2270
+ },
2271
+ {
2272
+ "epoch": 1.06,
2273
+ "learning_rate": 0.0003939722224093439,
2274
+ "loss": 0.452,
2275
+ "step": 355
2276
+ },
2277
+ {
2278
+ "epoch": 1.07,
2279
+ "learning_rate": 0.0003937521965721831,
2280
+ "loss": 0.3755,
2281
+ "step": 356
2282
+ },
2283
+ {
2284
+ "epoch": 1.07,
2285
+ "learning_rate": 0.00039352829038027563,
2286
+ "loss": 0.4767,
2287
+ "step": 357
2288
+ },
2289
+ {
2290
+ "epoch": 1.07,
2291
+ "learning_rate": 0.0003933005083178828,
2292
+ "loss": 0.3707,
2293
+ "step": 358
2294
+ },
2295
+ {
2296
+ "epoch": 1.07,
2297
+ "learning_rate": 0.0003930688549468894,
2298
+ "loss": 0.4981,
2299
+ "step": 359
2300
+ },
2301
+ {
2302
+ "epoch": 1.08,
2303
+ "learning_rate": 0.0003928333349067125,
2304
+ "loss": 0.3779,
2305
+ "step": 360
2306
+ },
2307
+ {
2308
+ "epoch": 1.08,
2309
+ "eval_loss": 0.5540307760238647,
2310
+ "eval_runtime": 19.6904,
2311
+ "eval_samples_per_second": 82.731,
2312
+ "eval_steps_per_second": 41.391,
2313
+ "step": 360
2314
+ },
2315
+ {
2316
+ "epoch": 1.08,
2317
+ "learning_rate": 0.00039259395291420864,
2318
+ "loss": 0.4336,
2319
+ "step": 361
2320
+ },
2321
+ {
2322
+ "epoch": 1.08,
2323
+ "learning_rate": 0.0003923507137635792,
2324
+ "loss": 0.5584,
2325
+ "step": 362
2326
+ },
2327
+ {
2328
+ "epoch": 1.09,
2329
+ "learning_rate": 0.0003921036223262745,
2330
+ "loss": 0.3806,
2331
+ "step": 363
2332
+ },
2333
+ {
2334
+ "epoch": 1.09,
2335
+ "learning_rate": 0.0003918526835508961,
2336
+ "loss": 0.3281,
2337
+ "step": 364
2338
+ },
2339
+ {
2340
+ "epoch": 1.09,
2341
+ "learning_rate": 0.0003915979024630978,
2342
+ "loss": 0.5519,
2343
+ "step": 365
2344
+ },
2345
+ {
2346
+ "epoch": 1.1,
2347
+ "learning_rate": 0.0003913392841654851,
2348
+ "loss": 0.5945,
2349
+ "step": 366
2350
+ },
2351
+ {
2352
+ "epoch": 1.1,
2353
+ "learning_rate": 0.0003910768338375126,
2354
+ "loss": 0.5542,
2355
+ "step": 367
2356
+ },
2357
+ {
2358
+ "epoch": 1.1,
2359
+ "learning_rate": 0.00039081055673538095,
2360
+ "loss": 0.5227,
2361
+ "step": 368
2362
+ },
2363
+ {
2364
+ "epoch": 1.1,
2365
+ "learning_rate": 0.0003905404581919307,
2366
+ "loss": 0.5136,
2367
+ "step": 369
2368
+ },
2369
+ {
2370
+ "epoch": 1.11,
2371
+ "learning_rate": 0.0003902665436165364,
2372
+ "loss": 0.5915,
2373
+ "step": 370
2374
+ },
2375
+ {
2376
+ "epoch": 1.11,
2377
+ "learning_rate": 0.00038998881849499755,
2378
+ "loss": 0.4481,
2379
+ "step": 371
2380
+ },
2381
+ {
2382
+ "epoch": 1.11,
2383
+ "learning_rate": 0.0003897072883894291,
2384
+ "loss": 0.3885,
2385
+ "step": 372
2386
+ },
2387
+ {
2388
+ "epoch": 1.12,
2389
+ "learning_rate": 0.0003894219589381501,
2390
+ "loss": 0.5203,
2391
+ "step": 373
2392
+ },
2393
+ {
2394
+ "epoch": 1.12,
2395
+ "learning_rate": 0.0003891328358555705,
2396
+ "loss": 0.3433,
2397
+ "step": 374
2398
+ },
2399
+ {
2400
+ "epoch": 1.12,
2401
+ "learning_rate": 0.00038883992493207693,
2402
+ "loss": 0.5007,
2403
+ "step": 375
2404
+ },
2405
+ {
2406
+ "epoch": 1.13,
2407
+ "learning_rate": 0.00038854323203391664,
2408
+ "loss": 0.5168,
2409
+ "step": 376
2410
+ },
2411
+ {
2412
+ "epoch": 1.13,
2413
+ "learning_rate": 0.00038824276310308003,
2414
+ "loss": 0.4943,
2415
+ "step": 377
2416
+ },
2417
+ {
2418
+ "epoch": 1.13,
2419
+ "learning_rate": 0.0003879385241571817,
2420
+ "loss": 0.4103,
2421
+ "step": 378
2422
+ },
2423
+ {
2424
+ "epoch": 1.13,
2425
+ "learning_rate": 0.00038763052128933985,
2426
+ "loss": 0.4409,
2427
+ "step": 379
2428
+ },
2429
+ {
2430
+ "epoch": 1.14,
2431
+ "learning_rate": 0.0003873187606680543,
2432
+ "loss": 0.4431,
2433
+ "step": 380
2434
+ },
2435
+ {
2436
+ "epoch": 1.14,
2437
+ "eval_loss": 0.5375325679779053,
2438
+ "eval_runtime": 19.6953,
2439
+ "eval_samples_per_second": 82.71,
2440
+ "eval_steps_per_second": 41.38,
2441
+ "step": 380
2442
+ },
2443
+ {
2444
+ "epoch": 1.14,
2445
+ "learning_rate": 0.000387003248537083,
2446
+ "loss": 0.5886,
2447
+ "step": 381
2448
+ },
2449
+ {
2450
+ "epoch": 1.14,
2451
+ "learning_rate": 0.0003866839912153168,
2452
+ "loss": 0.3477,
2453
+ "step": 382
2454
+ },
2455
+ {
2456
+ "epoch": 1.15,
2457
+ "learning_rate": 0.00038636099509665306,
2458
+ "loss": 0.3956,
2459
+ "step": 383
2460
+ },
2461
+ {
2462
+ "epoch": 1.15,
2463
+ "learning_rate": 0.0003860342666498677,
2464
+ "loss": 0.4101,
2465
+ "step": 384
2466
+ },
2467
+ {
2468
+ "epoch": 1.15,
2469
+ "learning_rate": 0.0003857038124184853,
2470
+ "loss": 0.497,
2471
+ "step": 385
2472
+ },
2473
+ {
2474
+ "epoch": 1.16,
2475
+ "learning_rate": 0.00038536963902064834,
2476
+ "loss": 0.4663,
2477
+ "step": 386
2478
+ },
2479
+ {
2480
+ "epoch": 1.16,
2481
+ "learning_rate": 0.0003850317531489847,
2482
+ "loss": 0.3703,
2483
+ "step": 387
2484
+ },
2485
+ {
2486
+ "epoch": 1.16,
2487
+ "learning_rate": 0.00038469016157047334,
2488
+ "loss": 0.3561,
2489
+ "step": 388
2490
+ },
2491
+ {
2492
+ "epoch": 1.16,
2493
+ "learning_rate": 0.0003843448711263089,
2494
+ "loss": 0.5081,
2495
+ "step": 389
2496
+ },
2497
+ {
2498
+ "epoch": 1.17,
2499
+ "learning_rate": 0.00038399588873176487,
2500
+ "loss": 0.5834,
2501
+ "step": 390
2502
+ },
2503
+ {
2504
+ "epoch": 1.17,
2505
+ "learning_rate": 0.00038364322137605483,
2506
+ "loss": 0.3454,
2507
+ "step": 391
2508
+ },
2509
+ {
2510
+ "epoch": 1.17,
2511
+ "learning_rate": 0.00038328687612219263,
2512
+ "loss": 0.5714,
2513
+ "step": 392
2514
+ },
2515
+ {
2516
+ "epoch": 1.18,
2517
+ "learning_rate": 0.00038292686010685093,
2518
+ "loss": 0.4238,
2519
+ "step": 393
2520
+ },
2521
+ {
2522
+ "epoch": 1.18,
2523
+ "learning_rate": 0.0003825631805402182,
2524
+ "loss": 0.3918,
2525
+ "step": 394
2526
+ },
2527
+ {
2528
+ "epoch": 1.18,
2529
+ "learning_rate": 0.0003821958447058543,
2530
+ "loss": 0.4761,
2531
+ "step": 395
2532
+ },
2533
+ {
2534
+ "epoch": 1.19,
2535
+ "learning_rate": 0.0003818248599605448,
2536
+ "loss": 0.4039,
2537
+ "step": 396
2538
+ },
2539
+ {
2540
+ "epoch": 1.19,
2541
+ "learning_rate": 0.00038145023373415326,
2542
+ "loss": 0.4255,
2543
+ "step": 397
2544
+ },
2545
+ {
2546
+ "epoch": 1.19,
2547
+ "learning_rate": 0.0003810719735294731,
2548
+ "loss": 0.3922,
2549
+ "step": 398
2550
+ },
2551
+ {
2552
+ "epoch": 1.19,
2553
+ "learning_rate": 0.00038069008692207646,
2554
+ "loss": 0.3467,
2555
+ "step": 399
2556
+ },
2557
+ {
2558
+ "epoch": 1.2,
2559
+ "learning_rate": 0.0003803045815601633,
2560
+ "loss": 0.38,
2561
+ "step": 400
2562
+ },
2563
+ {
2564
+ "epoch": 1.2,
2565
+ "eval_loss": 0.5541014075279236,
2566
+ "eval_runtime": 19.701,
2567
+ "eval_samples_per_second": 82.686,
2568
+ "eval_steps_per_second": 41.368,
2569
+ "step": 400
2570
+ },
2571
+ {
2572
+ "epoch": 1.2,
2573
+ "learning_rate": 0.00037991546516440746,
2574
+ "loss": 0.3734,
2575
+ "step": 401
2576
+ },
2577
+ {
2578
+ "epoch": 1.2,
2579
+ "learning_rate": 0.0003795227455278028,
2580
+ "loss": 0.4125,
2581
+ "step": 402
2582
+ },
2583
+ {
2584
+ "epoch": 1.21,
2585
+ "learning_rate": 0.00037912643051550674,
2586
+ "loss": 0.5494,
2587
+ "step": 403
2588
+ },
2589
+ {
2590
+ "epoch": 1.21,
2591
+ "learning_rate": 0.0003787265280646825,
2592
+ "loss": 0.4811,
2593
+ "step": 404
2594
+ },
2595
+ {
2596
+ "epoch": 1.21,
2597
+ "learning_rate": 0.0003783230461843406,
2598
+ "loss": 0.3422,
2599
+ "step": 405
2600
+ },
2601
+ {
2602
+ "epoch": 1.22,
2603
+ "learning_rate": 0.00037791599295517825,
2604
+ "loss": 0.5504,
2605
+ "step": 406
2606
+ },
2607
+ {
2608
+ "epoch": 1.22,
2609
+ "learning_rate": 0.00037750537652941744,
2610
+ "loss": 0.3561,
2611
+ "step": 407
2612
+ },
2613
+ {
2614
+ "epoch": 1.22,
2615
+ "learning_rate": 0.000377091205130642,
2616
+ "loss": 0.4455,
2617
+ "step": 408
2618
+ },
2619
+ {
2620
+ "epoch": 1.22,
2621
+ "learning_rate": 0.0003766734870536323,
2622
+ "loss": 0.4416,
2623
+ "step": 409
2624
+ },
2625
+ {
2626
+ "epoch": 1.23,
2627
+ "learning_rate": 0.0003762522306641998,
2628
+ "loss": 0.4755,
2629
+ "step": 410
2630
+ },
2631
+ {
2632
+ "epoch": 1.23,
2633
+ "learning_rate": 0.00037582744439901896,
2634
+ "loss": 0.3792,
2635
+ "step": 411
2636
+ },
2637
+ {
2638
+ "epoch": 1.23,
2639
+ "learning_rate": 0.0003753991367654587,
2640
+ "loss": 0.3195,
2641
+ "step": 412
2642
+ },
2643
+ {
2644
+ "epoch": 1.24,
2645
+ "learning_rate": 0.0003749673163414117,
2646
+ "loss": 0.5866,
2647
+ "step": 413
2648
+ },
2649
+ {
2650
+ "epoch": 1.24,
2651
+ "learning_rate": 0.0003745319917751229,
2652
+ "loss": 0.5543,
2653
+ "step": 414
2654
+ },
2655
+ {
2656
+ "epoch": 1.24,
2657
+ "learning_rate": 0.0003740931717850159,
2658
+ "loss": 0.4846,
2659
+ "step": 415
2660
+ },
2661
+ {
2662
+ "epoch": 1.25,
2663
+ "learning_rate": 0.00037365086515951874,
2664
+ "loss": 0.4445,
2665
+ "step": 416
2666
+ },
2667
+ {
2668
+ "epoch": 1.25,
2669
+ "learning_rate": 0.00037320508075688776,
2670
+ "loss": 0.4562,
2671
+ "step": 417
2672
+ },
2673
+ {
2674
+ "epoch": 1.25,
2675
+ "learning_rate": 0.00037275582750503005,
2676
+ "loss": 0.3521,
2677
+ "step": 418
2678
+ },
2679
+ {
2680
+ "epoch": 1.25,
2681
+ "learning_rate": 0.00037230311440132494,
2682
+ "loss": 0.4617,
2683
+ "step": 419
2684
+ },
2685
+ {
2686
+ "epoch": 1.26,
2687
+ "learning_rate": 0.0003718469505124434,
2688
+ "loss": 0.4542,
2689
+ "step": 420
2690
+ },
2691
+ {
2692
+ "epoch": 1.26,
2693
+ "eval_loss": 0.5359145998954773,
2694
+ "eval_runtime": 19.6805,
2695
+ "eval_samples_per_second": 82.772,
2696
+ "eval_steps_per_second": 41.412,
2697
+ "step": 420
2698
+ },
2699
+ {
2700
+ "epoch": 1.26,
2701
+ "learning_rate": 0.00037138734497416684,
2702
+ "loss": 0.5988,
2703
+ "step": 421
2704
+ },
2705
+ {
2706
+ "epoch": 1.26,
2707
+ "learning_rate": 0.00037092430699120407,
2708
+ "loss": 0.4067,
2709
+ "step": 422
2710
+ },
2711
+ {
2712
+ "epoch": 1.27,
2713
+ "learning_rate": 0.0003704578458370067,
2714
+ "loss": 0.4393,
2715
+ "step": 423
2716
+ },
2717
+ {
2718
+ "epoch": 1.27,
2719
+ "learning_rate": 0.00036998797085358373,
2720
+ "loss": 0.3647,
2721
+ "step": 424
2722
+ },
2723
+ {
2724
+ "epoch": 1.27,
2725
+ "learning_rate": 0.0003695146914513142,
2726
+ "loss": 0.4404,
2727
+ "step": 425
2728
+ },
2729
+ {
2730
+ "epoch": 1.28,
2731
+ "learning_rate": 0.000369038017108759,
2732
+ "loss": 0.3784,
2733
+ "step": 426
2734
+ },
2735
+ {
2736
+ "epoch": 1.28,
2737
+ "learning_rate": 0.0003685579573724707,
2738
+ "loss": 0.3774,
2739
+ "step": 427
2740
+ },
2741
+ {
2742
+ "epoch": 1.28,
2743
+ "learning_rate": 0.0003680745218568026,
2744
+ "loss": 0.5151,
2745
+ "step": 428
2746
+ },
2747
+ {
2748
+ "epoch": 1.28,
2749
+ "learning_rate": 0.0003675877202437163,
2750
+ "loss": 0.4938,
2751
+ "step": 429
2752
+ },
2753
+ {
2754
+ "epoch": 1.29,
2755
+ "learning_rate": 0.00036709756228258734,
2756
+ "loss": 0.5074,
2757
+ "step": 430
2758
+ },
2759
+ {
2760
+ "epoch": 1.29,
2761
+ "learning_rate": 0.0003666040577900104,
2762
+ "loss": 0.5189,
2763
+ "step": 431
2764
+ },
2765
+ {
2766
+ "epoch": 1.29,
2767
+ "learning_rate": 0.00036610721664960235,
2768
+ "loss": 0.4475,
2769
+ "step": 432
2770
+ },
2771
+ {
2772
+ "epoch": 1.3,
2773
+ "learning_rate": 0.0003656070488118047,
2774
+ "loss": 0.5143,
2775
+ "step": 433
2776
+ },
2777
+ {
2778
+ "epoch": 1.3,
2779
+ "learning_rate": 0.000365103564293684,
2780
+ "loss": 0.3831,
2781
+ "step": 434
2782
+ },
2783
+ {
2784
+ "epoch": 1.3,
2785
+ "learning_rate": 0.0003645967731787313,
2786
+ "loss": 0.5165,
2787
+ "step": 435
2788
+ },
2789
+ {
2790
+ "epoch": 1.31,
2791
+ "learning_rate": 0.00036408668561666014,
2792
+ "loss": 0.3781,
2793
+ "step": 436
2794
+ },
2795
+ {
2796
+ "epoch": 1.31,
2797
+ "learning_rate": 0.00036357331182320344,
2798
+ "loss": 0.3964,
2799
+ "step": 437
2800
+ },
2801
+ {
2802
+ "epoch": 1.31,
2803
+ "learning_rate": 0.00036305666207990886,
2804
+ "loss": 0.633,
2805
+ "step": 438
2806
+ },
2807
+ {
2808
+ "epoch": 1.31,
2809
+ "learning_rate": 0.0003625367467339329,
2810
+ "loss": 0.3614,
2811
+ "step": 439
2812
+ },
2813
+ {
2814
+ "epoch": 1.32,
2815
+ "learning_rate": 0.0003620135761978333,
2816
+ "loss": 0.5392,
2817
+ "step": 440
2818
+ },
2819
+ {
2820
+ "epoch": 1.32,
2821
+ "eval_loss": 0.5393971800804138,
2822
+ "eval_runtime": 19.6671,
2823
+ "eval_samples_per_second": 82.829,
2824
+ "eval_steps_per_second": 41.44,
2825
+ "step": 440
2826
+ },
2827
+ {
2828
+ "epoch": 1.32,
2829
+ "learning_rate": 0.0003614871609493614,
2830
+ "loss": 0.4335,
2831
+ "step": 441
2832
+ },
2833
+ {
2834
+ "epoch": 1.32,
2835
+ "learning_rate": 0.00036095751153125113,
2836
+ "loss": 0.5452,
2837
+ "step": 442
2838
+ },
2839
+ {
2840
+ "epoch": 1.33,
2841
+ "learning_rate": 0.0003604246385510088,
2842
+ "loss": 0.4373,
2843
+ "step": 443
2844
+ },
2845
+ {
2846
+ "epoch": 1.33,
2847
+ "learning_rate": 0.0003598885526807003,
2848
+ "loss": 0.3662,
2849
+ "step": 444
2850
+ },
2851
+ {
2852
+ "epoch": 1.33,
2853
+ "learning_rate": 0.0003593492646567372,
2854
+ "loss": 0.3444,
2855
+ "step": 445
2856
+ },
2857
+ {
2858
+ "epoch": 1.34,
2859
+ "learning_rate": 0.00035880678527966224,
2860
+ "loss": 0.449,
2861
+ "step": 446
2862
+ },
2863
+ {
2864
+ "epoch": 1.34,
2865
+ "learning_rate": 0.0003582611254139324,
2866
+ "loss": 0.6952,
2867
+ "step": 447
2868
+ },
2869
+ {
2870
+ "epoch": 1.34,
2871
+ "learning_rate": 0.00035771229598770174,
2872
+ "loss": 0.5637,
2873
+ "step": 448
2874
+ },
2875
+ {
2876
+ "epoch": 1.34,
2877
+ "learning_rate": 0.00035716030799260237,
2878
+ "loss": 0.4937,
2879
+ "step": 449
2880
+ },
2881
+ {
2882
+ "epoch": 1.35,
2883
+ "learning_rate": 0.0003566051724835245,
2884
+ "loss": 0.3008,
2885
+ "step": 450
2886
+ },
2887
+ {
2888
+ "epoch": 1.35,
2889
+ "learning_rate": 0.0003560469005783945,
2890
+ "loss": 0.5146,
2891
+ "step": 451
2892
+ },
2893
+ {
2894
+ "epoch": 1.35,
2895
+ "learning_rate": 0.0003554855034579532,
2896
+ "loss": 0.3873,
2897
+ "step": 452
2898
+ },
2899
+ {
2900
+ "epoch": 1.36,
2901
+ "learning_rate": 0.0003549209923655309,
2902
+ "loss": 0.4848,
2903
+ "step": 453
2904
+ },
2905
+ {
2906
+ "epoch": 1.36,
2907
+ "learning_rate": 0.00035435337860682304,
2908
+ "loss": 0.4622,
2909
+ "step": 454
2910
+ },
2911
+ {
2912
+ "epoch": 1.36,
2913
+ "learning_rate": 0.0003537826735496631,
2914
+ "loss": 0.4216,
2915
+ "step": 455
2916
+ },
2917
+ {
2918
+ "epoch": 1.37,
2919
+ "learning_rate": 0.0003532088886237956,
2920
+ "loss": 0.4149,
2921
+ "step": 456
2922
+ },
2923
+ {
2924
+ "epoch": 1.37,
2925
+ "learning_rate": 0.0003526320353206467,
2926
+ "loss": 0.5213,
2927
+ "step": 457
2928
+ },
2929
+ {
2930
+ "epoch": 1.37,
2931
+ "learning_rate": 0.00035205212519309406,
2932
+ "loss": 0.3278,
2933
+ "step": 458
2934
+ },
2935
+ {
2936
+ "epoch": 1.37,
2937
+ "learning_rate": 0.00035146916985523603,
2938
+ "loss": 0.5037,
2939
+ "step": 459
2940
+ },
2941
+ {
2942
+ "epoch": 1.38,
2943
+ "learning_rate": 0.00035088318098215805,
2944
+ "loss": 0.2573,
2945
+ "step": 460
2946
+ },
2947
+ {
2948
+ "epoch": 1.38,
2949
+ "eval_loss": 0.5317687392234802,
2950
+ "eval_runtime": 19.6777,
2951
+ "eval_samples_per_second": 82.784,
2952
+ "eval_steps_per_second": 41.417,
2953
+ "step": 460
2954
+ },
2955
+ {
2956
+ "epoch": 1.38,
2957
+ "learning_rate": 0.0003502941703097,
2958
+ "loss": 0.3546,
2959
+ "step": 461
2960
+ },
2961
+ {
2962
+ "epoch": 1.38,
2963
+ "learning_rate": 0.00034970214963422024,
2964
+ "loss": 0.4123,
2965
+ "step": 462
2966
+ },
2967
+ {
2968
+ "epoch": 1.39,
2969
+ "learning_rate": 0.0003491071308123598,
2970
+ "loss": 0.4477,
2971
+ "step": 463
2972
+ },
2973
+ {
2974
+ "epoch": 1.39,
2975
+ "learning_rate": 0.0003485091257608047,
2976
+ "loss": 0.5281,
2977
+ "step": 464
2978
+ },
2979
+ {
2980
+ "epoch": 1.39,
2981
+ "learning_rate": 0.00034790814645604745,
2982
+ "loss": 0.3655,
2983
+ "step": 465
2984
+ },
2985
+ {
2986
+ "epoch": 1.4,
2987
+ "learning_rate": 0.0003473042049341474,
2988
+ "loss": 0.5804,
2989
+ "step": 466
2990
+ },
2991
+ {
2992
+ "epoch": 1.4,
2993
+ "learning_rate": 0.0003466973132904892,
2994
+ "loss": 0.5677,
2995
+ "step": 467
2996
+ },
2997
+ {
2998
+ "epoch": 1.4,
2999
+ "learning_rate": 0.00034608748367954067,
3000
+ "loss": 0.4017,
3001
+ "step": 468
3002
+ },
3003
+ {
3004
+ "epoch": 1.4,
3005
+ "learning_rate": 0.00034547472831460976,
3006
+ "loss": 0.4458,
3007
+ "step": 469
3008
+ },
3009
+ {
3010
+ "epoch": 1.41,
3011
+ "learning_rate": 0.00034485905946759967,
3012
+ "loss": 0.545,
3013
+ "step": 470
3014
+ },
3015
+ {
3016
+ "epoch": 1.41,
3017
+ "learning_rate": 0.00034424048946876294,
3018
+ "loss": 0.3223,
3019
+ "step": 471
3020
+ },
3021
+ {
3022
+ "epoch": 1.41,
3023
+ "learning_rate": 0.0003436190307064548,
3024
+ "loss": 0.4871,
3025
+ "step": 472
3026
+ },
3027
+ {
3028
+ "epoch": 1.42,
3029
+ "learning_rate": 0.00034299469562688493,
3030
+ "loss": 0.3844,
3031
+ "step": 473
3032
+ },
3033
+ {
3034
+ "epoch": 1.42,
3035
+ "learning_rate": 0.0003423674967338681,
3036
+ "loss": 0.4292,
3037
+ "step": 474
3038
+ },
3039
+ {
3040
+ "epoch": 1.42,
3041
+ "learning_rate": 0.000341737446588574,
3042
+ "loss": 0.5881,
3043
+ "step": 475
3044
+ },
3045
+ {
3046
+ "epoch": 1.43,
3047
+ "learning_rate": 0.0003411045578092754,
3048
+ "loss": 0.4427,
3049
+ "step": 476
3050
+ },
3051
+ {
3052
+ "epoch": 1.43,
3053
+ "learning_rate": 0.00034046884307109554,
3054
+ "loss": 0.4227,
3055
+ "step": 477
3056
+ },
3057
+ {
3058
+ "epoch": 1.43,
3059
+ "learning_rate": 0.0003398303151057543,
3060
+ "loss": 0.3376,
3061
+ "step": 478
3062
+ },
3063
+ {
3064
+ "epoch": 1.43,
3065
+ "learning_rate": 0.0003391889867013134,
3066
+ "loss": 0.3996,
3067
+ "step": 479
3068
+ },
3069
+ {
3070
+ "epoch": 1.44,
3071
+ "learning_rate": 0.00033854487070191994,
3072
+ "loss": 0.5441,
3073
+ "step": 480
3074
+ },
3075
+ {
3076
+ "epoch": 1.44,
3077
+ "eval_loss": 0.5200814008712769,
3078
+ "eval_runtime": 19.6972,
3079
+ "eval_samples_per_second": 82.702,
3080
+ "eval_steps_per_second": 41.376,
3081
+ "step": 480
3082
+ },
3083
+ {
3084
+ "epoch": 1.44,
3085
+ "learning_rate": 0.00033789798000754927,
3086
+ "loss": 0.5463,
3087
+ "step": 481
3088
+ },
3089
+ {
3090
+ "epoch": 1.44,
3091
+ "learning_rate": 0.0003372483275737468,
3092
+ "loss": 0.4824,
3093
+ "step": 482
3094
+ },
3095
+ {
3096
+ "epoch": 1.45,
3097
+ "learning_rate": 0.0003365959264113683,
3098
+ "loss": 0.4886,
3099
+ "step": 483
3100
+ },
3101
+ {
3102
+ "epoch": 1.45,
3103
+ "learning_rate": 0.00033594078958631984,
3104
+ "loss": 0.6352,
3105
+ "step": 484
3106
+ },
3107
+ {
3108
+ "epoch": 1.45,
3109
+ "learning_rate": 0.00033528293021929526,
3110
+ "loss": 0.513,
3111
+ "step": 485
3112
+ },
3113
+ {
3114
+ "epoch": 1.46,
3115
+ "learning_rate": 0.00033462236148551407,
3116
+ "loss": 0.5665,
3117
+ "step": 486
3118
+ },
3119
+ {
3120
+ "epoch": 1.46,
3121
+ "learning_rate": 0.00033395909661445737,
3122
+ "loss": 0.2888,
3123
+ "step": 487
3124
+ },
3125
+ {
3126
+ "epoch": 1.46,
3127
+ "learning_rate": 0.0003332931488896029,
3128
+ "loss": 0.5008,
3129
+ "step": 488
3130
+ },
3131
+ {
3132
+ "epoch": 1.46,
3133
+ "learning_rate": 0.00033262453164815904,
3134
+ "loss": 0.3498,
3135
+ "step": 489
3136
+ },
3137
+ {
3138
+ "epoch": 1.47,
3139
+ "learning_rate": 0.0003319532582807977,
3140
+ "loss": 0.3529,
3141
+ "step": 490
3142
+ },
3143
+ {
3144
+ "epoch": 1.47,
3145
+ "learning_rate": 0.00033127934223138594,
3146
+ "loss": 0.4944,
3147
+ "step": 491
3148
+ },
3149
+ {
3150
+ "epoch": 1.47,
3151
+ "learning_rate": 0.000330602796996717,
3152
+ "loss": 0.3927,
3153
+ "step": 492
3154
+ },
3155
+ {
3156
+ "epoch": 1.48,
3157
+ "learning_rate": 0.0003299236361262401,
3158
+ "loss": 0.4016,
3159
+ "step": 493
3160
+ },
3161
+ {
3162
+ "epoch": 1.48,
3163
+ "learning_rate": 0.00032924187322178863,
3164
+ "loss": 0.4036,
3165
+ "step": 494
3166
+ },
3167
+ {
3168
+ "epoch": 1.48,
3169
+ "learning_rate": 0.00032855752193730787,
3170
+ "loss": 0.361,
3171
+ "step": 495
3172
+ },
3173
+ {
3174
+ "epoch": 1.49,
3175
+ "learning_rate": 0.00032787059597858204,
3176
+ "loss": 0.3037,
3177
+ "step": 496
3178
+ },
3179
+ {
3180
+ "epoch": 1.49,
3181
+ "learning_rate": 0.000327181109102959,
3182
+ "loss": 0.4355,
3183
+ "step": 497
3184
+ },
3185
+ {
3186
+ "epoch": 1.49,
3187
+ "learning_rate": 0.00032648907511907547,
3188
+ "loss": 0.4793,
3189
+ "step": 498
3190
+ },
3191
+ {
3192
+ "epoch": 1.49,
3193
+ "learning_rate": 0.00032579450788658,
3194
+ "loss": 0.3863,
3195
+ "step": 499
3196
+ },
3197
+ {
3198
+ "epoch": 1.5,
3199
+ "learning_rate": 0.0003250974213158555,
3200
+ "loss": 0.3758,
3201
+ "step": 500
3202
+ },
3203
+ {
3204
+ "epoch": 1.5,
3205
+ "eval_loss": 0.5146722197532654,
3206
+ "eval_runtime": 19.6884,
3207
+ "eval_samples_per_second": 82.739,
3208
+ "eval_steps_per_second": 41.395,
3209
+ "step": 500
3210
+ },
3211
+ {
3212
+ "epoch": 1.5,
3213
+ "learning_rate": 0.0003243978293677408,
3214
+ "loss": 0.4627,
3215
+ "step": 501
3216
+ },
3217
+ {
3218
+ "epoch": 1.5,
3219
+ "learning_rate": 0.000323695746053251,
3220
+ "loss": 0.6255,
3221
+ "step": 502
3222
+ },
3223
+ {
3224
+ "epoch": 1.51,
3225
+ "learning_rate": 0.00032299118543329666,
3226
+ "loss": 0.3893,
3227
+ "step": 503
3228
+ },
3229
+ {
3230
+ "epoch": 1.51,
3231
+ "learning_rate": 0.00032228416161840246,
3232
+ "loss": 0.4511,
3233
+ "step": 504
3234
+ },
3235
+ {
3236
+ "epoch": 1.51,
3237
+ "learning_rate": 0.0003215746887684244,
3238
+ "loss": 0.3465,
3239
+ "step": 505
3240
+ },
3241
+ {
3242
+ "epoch": 1.51,
3243
+ "learning_rate": 0.0003208627810922665,
3244
+ "loss": 0.3162,
3245
+ "step": 506
3246
+ },
3247
+ {
3248
+ "epoch": 1.52,
3249
+ "learning_rate": 0.0003201484528475958,
3250
+ "loss": 0.5037,
3251
+ "step": 507
3252
+ },
3253
+ {
3254
+ "epoch": 1.52,
3255
+ "learning_rate": 0.00031943171834055724,
3256
+ "loss": 0.4016,
3257
+ "step": 508
3258
+ },
3259
+ {
3260
+ "epoch": 1.52,
3261
+ "learning_rate": 0.00031871259192548695,
3262
+ "loss": 0.5064,
3263
+ "step": 509
3264
+ },
3265
+ {
3266
+ "epoch": 1.53,
3267
+ "learning_rate": 0.00031799108800462464,
3268
+ "loss": 0.3268,
3269
+ "step": 510
3270
+ },
3271
+ {
3272
+ "epoch": 1.53,
3273
+ "learning_rate": 0.0003172672210278254,
3274
+ "loss": 0.4825,
3275
+ "step": 511
3276
+ },
3277
+ {
3278
+ "epoch": 1.53,
3279
+ "learning_rate": 0.00031654100549227026,
3280
+ "loss": 0.5051,
3281
+ "step": 512
3282
+ },
3283
+ {
3284
+ "epoch": 1.54,
3285
+ "learning_rate": 0.0003158124559421758,
3286
+ "loss": 0.4095,
3287
+ "step": 513
3288
+ },
3289
+ {
3290
+ "epoch": 1.54,
3291
+ "learning_rate": 0.00031508158696850276,
3292
+ "loss": 0.476,
3293
+ "step": 514
3294
+ },
3295
+ {
3296
+ "epoch": 1.54,
3297
+ "learning_rate": 0.00031434841320866395,
3298
+ "loss": 0.4871,
3299
+ "step": 515
3300
+ },
3301
+ {
3302
+ "epoch": 1.54,
3303
+ "learning_rate": 0.00031361294934623114,
3304
+ "loss": 0.5544,
3305
+ "step": 516
3306
+ },
3307
+ {
3308
+ "epoch": 1.55,
3309
+ "learning_rate": 0.000312875210110641,
3310
+ "loss": 0.6146,
3311
+ "step": 517
3312
+ },
3313
+ {
3314
+ "epoch": 1.55,
3315
+ "learning_rate": 0.0003121352102768998,
3316
+ "loss": 0.3261,
3317
+ "step": 518
3318
+ },
3319
+ {
3320
+ "epoch": 1.55,
3321
+ "learning_rate": 0.0003113929646652879,
3322
+ "loss": 0.4999,
3323
+ "step": 519
3324
+ },
3325
+ {
3326
+ "epoch": 1.56,
3327
+ "learning_rate": 0.0003106484881410628,
3328
+ "loss": 0.4403,
3329
+ "step": 520
3330
+ },
3331
+ {
3332
+ "epoch": 1.56,
3333
+ "eval_loss": 0.5133521556854248,
3334
+ "eval_runtime": 19.6973,
3335
+ "eval_samples_per_second": 82.702,
3336
+ "eval_steps_per_second": 41.376,
3337
+ "step": 520
3338
+ },
3339
+ {
3340
+ "epoch": 1.56,
3341
+ "learning_rate": 0.0003099017956141612,
3342
+ "loss": 0.2877,
3343
+ "step": 521
3344
+ },
3345
+ {
3346
+ "epoch": 1.56,
3347
+ "learning_rate": 0.0003091529020389009,
3348
+ "loss": 0.4409,
3349
+ "step": 522
3350
+ },
3351
+ {
3352
+ "epoch": 1.57,
3353
+ "learning_rate": 0.0003084018224136808,
3354
+ "loss": 0.4555,
3355
+ "step": 523
3356
+ },
3357
+ {
3358
+ "epoch": 1.57,
3359
+ "learning_rate": 0.0003076485717806808,
3360
+ "loss": 0.3673,
3361
+ "step": 524
3362
+ },
3363
+ {
3364
+ "epoch": 1.57,
3365
+ "learning_rate": 0.0003068931652255602,
3366
+ "loss": 0.5537,
3367
+ "step": 525
3368
+ },
3369
+ {
3370
+ "epoch": 1.57,
3371
+ "learning_rate": 0.00030613561787715636,
3372
+ "loss": 0.4184,
3373
+ "step": 526
3374
+ },
3375
+ {
3376
+ "epoch": 1.58,
3377
+ "learning_rate": 0.0003053759449071807,
3378
+ "loss": 0.603,
3379
+ "step": 527
3380
+ },
3381
+ {
3382
+ "epoch": 1.58,
3383
+ "learning_rate": 0.0003046141615299155,
3384
+ "loss": 0.8058,
3385
+ "step": 528
3386
+ },
3387
+ {
3388
+ "epoch": 1.58,
3389
+ "learning_rate": 0.0003038502830019092,
3390
+ "loss": 0.6798,
3391
+ "step": 529
3392
+ },
3393
+ {
3394
+ "epoch": 1.59,
3395
+ "learning_rate": 0.00030308432462167043,
3396
+ "loss": 0.49,
3397
+ "step": 530
3398
+ },
3399
+ {
3400
+ "epoch": 1.59,
3401
+ "learning_rate": 0.00030231630172936205,
3402
+ "loss": 0.473,
3403
+ "step": 531
3404
+ },
3405
+ {
3406
+ "epoch": 1.59,
3407
+ "learning_rate": 0.0003015462297064936,
3408
+ "loss": 0.5267,
3409
+ "step": 532
3410
+ },
3411
+ {
3412
+ "epoch": 1.6,
3413
+ "learning_rate": 0.00030077412397561343,
3414
+ "loss": 0.5525,
3415
+ "step": 533
3416
+ },
3417
+ {
3418
+ "epoch": 1.6,
3419
+ "learning_rate": 0.00030000000000000003,
3420
+ "loss": 0.3628,
3421
+ "step": 534
3422
+ },
3423
+ {
3424
+ "epoch": 1.6,
3425
+ "learning_rate": 0.0002992238732833518,
3426
+ "loss": 0.49,
3427
+ "step": 535
3428
+ },
3429
+ {
3430
+ "epoch": 1.6,
3431
+ "learning_rate": 0.00029844575936947696,
3432
+ "loss": 0.3702,
3433
+ "step": 536
3434
+ },
3435
+ {
3436
+ "epoch": 1.61,
3437
+ "learning_rate": 0.00029766567384198223,
3438
+ "loss": 0.4078,
3439
+ "step": 537
3440
+ },
3441
+ {
3442
+ "epoch": 1.61,
3443
+ "learning_rate": 0.00029688363232396056,
3444
+ "loss": 0.289,
3445
+ "step": 538
3446
+ },
3447
+ {
3448
+ "epoch": 1.61,
3449
+ "learning_rate": 0.0002960996504776783,
3450
+ "loss": 0.5381,
3451
+ "step": 539
3452
+ },
3453
+ {
3454
+ "epoch": 1.62,
3455
+ "learning_rate": 0.0002953137440042616,
3456
+ "loss": 0.3308,
3457
+ "step": 540
3458
+ },
3459
+ {
3460
+ "epoch": 1.62,
3461
+ "eval_loss": 0.5289412140846252,
3462
+ "eval_runtime": 19.6322,
3463
+ "eval_samples_per_second": 82.976,
3464
+ "eval_steps_per_second": 41.513,
3465
+ "step": 540
3466
+ },
3467
+ {
3468
+ "epoch": 1.62,
3469
+ "learning_rate": 0.00029452592864338194,
3470
+ "loss": 0.5115,
3471
+ "step": 541
3472
+ },
3473
+ {
3474
+ "epoch": 1.62,
3475
+ "learning_rate": 0.00029373622017294076,
3476
+ "loss": 0.4632,
3477
+ "step": 542
3478
+ },
3479
+ {
3480
+ "epoch": 1.63,
3481
+ "learning_rate": 0.0002929446344087537,
3482
+ "loss": 0.3159,
3483
+ "step": 543
3484
+ },
3485
+ {
3486
+ "epoch": 1.63,
3487
+ "learning_rate": 0.0002921511872042337,
3488
+ "loss": 0.3998,
3489
+ "step": 544
3490
+ },
3491
+ {
3492
+ "epoch": 1.63,
3493
+ "learning_rate": 0.00029135589445007356,
3494
+ "loss": 0.3087,
3495
+ "step": 545
3496
+ },
3497
+ {
3498
+ "epoch": 1.63,
3499
+ "learning_rate": 0.00029055877207392753,
3500
+ "loss": 0.3772,
3501
+ "step": 546
3502
+ },
3503
+ {
3504
+ "epoch": 1.64,
3505
+ "learning_rate": 0.00028975983604009246,
3506
+ "loss": 0.3606,
3507
+ "step": 547
3508
+ },
3509
+ {
3510
+ "epoch": 1.64,
3511
+ "learning_rate": 0.00028895910234918824,
3512
+ "loss": 0.6869,
3513
+ "step": 548
3514
+ },
3515
+ {
3516
+ "epoch": 1.64,
3517
+ "learning_rate": 0.00028815658703783715,
3518
+ "loss": 0.5079,
3519
+ "step": 549
3520
+ },
3521
+ {
3522
+ "epoch": 1.65,
3523
+ "learning_rate": 0.00028735230617834255,
3524
+ "loss": 0.5241,
3525
+ "step": 550
3526
+ },
3527
+ {
3528
+ "epoch": 1.65,
3529
+ "learning_rate": 0.00028654627587836723,
3530
+ "loss": 0.5162,
3531
+ "step": 551
3532
+ },
3533
+ {
3534
+ "epoch": 1.65,
3535
+ "learning_rate": 0.00028573851228061084,
3536
+ "loss": 0.6195,
3537
+ "step": 552
3538
+ },
3539
+ {
3540
+ "epoch": 1.66,
3541
+ "learning_rate": 0.0002849290315624864,
3542
+ "loss": 0.4383,
3543
+ "step": 553
3544
+ },
3545
+ {
3546
+ "epoch": 1.66,
3547
+ "learning_rate": 0.00028411784993579635,
3548
+ "loss": 0.4843,
3549
+ "step": 554
3550
+ },
3551
+ {
3552
+ "epoch": 1.66,
3553
+ "learning_rate": 0.00028330498364640804,
3554
+ "loss": 0.4263,
3555
+ "step": 555
3556
+ },
3557
+ {
3558
+ "epoch": 1.66,
3559
+ "learning_rate": 0.0002824904489739281,
3560
+ "loss": 0.3478,
3561
+ "step": 556
3562
+ },
3563
+ {
3564
+ "epoch": 1.67,
3565
+ "learning_rate": 0.00028167426223137685,
3566
+ "loss": 0.3659,
3567
+ "step": 557
3568
+ },
3569
+ {
3570
+ "epoch": 1.67,
3571
+ "learning_rate": 0.000280856439764861,
3572
+ "loss": 0.4651,
3573
+ "step": 558
3574
+ },
3575
+ {
3576
+ "epoch": 1.67,
3577
+ "learning_rate": 0.00028003699795324673,
3578
+ "loss": 0.3436,
3579
+ "step": 559
3580
+ },
3581
+ {
3582
+ "epoch": 1.68,
3583
+ "learning_rate": 0.0002792159532078314,
3584
+ "loss": 0.4604,
3585
+ "step": 560
3586
+ },
3587
+ {
3588
+ "epoch": 1.68,
3589
+ "eval_loss": 0.5204966068267822,
3590
+ "eval_runtime": 19.6795,
3591
+ "eval_samples_per_second": 82.776,
3592
+ "eval_steps_per_second": 41.414,
3593
+ "step": 560
3594
+ },
3595
+ {
3596
+ "epoch": 1.68,
3597
+ "learning_rate": 0.00027839332197201506,
3598
+ "loss": 0.5602,
3599
+ "step": 561
3600
+ },
3601
+ {
3602
+ "epoch": 1.68,
3603
+ "learning_rate": 0.000277569120720971,
3604
+ "loss": 0.5683,
3605
+ "step": 562
3606
+ },
3607
+ {
3608
+ "epoch": 1.69,
3609
+ "learning_rate": 0.0002767433659613159,
3610
+ "loss": 0.5508,
3611
+ "step": 563
3612
+ },
3613
+ {
3614
+ "epoch": 1.69,
3615
+ "learning_rate": 0.0002759160742307793,
3616
+ "loss": 0.4525,
3617
+ "step": 564
3618
+ },
3619
+ {
3620
+ "epoch": 1.69,
3621
+ "learning_rate": 0.000275087262097872,
3622
+ "loss": 0.3942,
3623
+ "step": 565
3624
+ },
3625
+ {
3626
+ "epoch": 1.69,
3627
+ "learning_rate": 0.0002742569461615547,
3628
+ "loss": 0.345,
3629
+ "step": 566
3630
+ },
3631
+ {
3632
+ "epoch": 1.7,
3633
+ "learning_rate": 0.00027342514305090553,
3634
+ "loss": 0.4092,
3635
+ "step": 567
3636
+ },
3637
+ {
3638
+ "epoch": 1.7,
3639
+ "learning_rate": 0.00027259186942478654,
3640
+ "loss": 0.3513,
3641
+ "step": 568
3642
+ },
3643
+ {
3644
+ "epoch": 1.7,
3645
+ "learning_rate": 0.0002717571419715107,
3646
+ "loss": 0.4873,
3647
+ "step": 569
3648
+ },
3649
+ {
3650
+ "epoch": 1.71,
3651
+ "learning_rate": 0.0002709209774085071,
3652
+ "loss": 0.4367,
3653
+ "step": 570
3654
+ },
3655
+ {
3656
+ "epoch": 1.71,
3657
+ "learning_rate": 0.00027008339248198675,
3658
+ "loss": 0.586,
3659
+ "step": 571
3660
+ },
3661
+ {
3662
+ "epoch": 1.71,
3663
+ "learning_rate": 0.00026924440396660656,
3664
+ "loss": 0.4092,
3665
+ "step": 572
3666
+ },
3667
+ {
3668
+ "epoch": 1.72,
3669
+ "learning_rate": 0.00026840402866513377,
3670
+ "loss": 0.3139,
3671
+ "step": 573
3672
+ },
3673
+ {
3674
+ "epoch": 1.72,
3675
+ "learning_rate": 0.0002675622834081095,
3676
+ "loss": 0.6028,
3677
+ "step": 574
3678
+ },
3679
+ {
3680
+ "epoch": 1.72,
3681
+ "learning_rate": 0.0002667191850535113,
3682
+ "loss": 0.3964,
3683
+ "step": 575
3684
+ },
3685
+ {
3686
+ "epoch": 1.72,
3687
+ "learning_rate": 0.00026587475048641594,
3688
+ "loss": 0.4798,
3689
+ "step": 576
3690
+ },
3691
+ {
3692
+ "epoch": 1.73,
3693
+ "learning_rate": 0.000265028996618661,
3694
+ "loss": 0.5801,
3695
+ "step": 577
3696
+ },
3697
+ {
3698
+ "epoch": 1.73,
3699
+ "learning_rate": 0.0002641819403885063,
3700
+ "loss": 0.3239,
3701
+ "step": 578
3702
+ },
3703
+ {
3704
+ "epoch": 1.73,
3705
+ "learning_rate": 0.00026333359876029453,
3706
+ "loss": 0.4352,
3707
+ "step": 579
3708
+ },
3709
+ {
3710
+ "epoch": 1.74,
3711
+ "learning_rate": 0.0002624839887241115,
3712
+ "loss": 0.4479,
3713
+ "step": 580
3714
+ },
3715
+ {
3716
+ "epoch": 1.74,
3717
+ "eval_loss": 0.5340219140052795,
3718
+ "eval_runtime": 19.6682,
3719
+ "eval_samples_per_second": 82.824,
3720
+ "eval_steps_per_second": 41.437,
3721
+ "step": 580
3722
+ },
3723
+ {
3724
+ "epoch": 1.74,
3725
+ "learning_rate": 0.00026163312729544615,
3726
+ "loss": 0.3648,
3727
+ "step": 581
3728
+ },
3729
+ {
3730
+ "epoch": 1.74,
3731
+ "learning_rate": 0.0002607810315148494,
3732
+ "loss": 0.4979,
3733
+ "step": 582
3734
+ },
3735
+ {
3736
+ "epoch": 1.75,
3737
+ "learning_rate": 0.00025992771844759316,
3738
+ "loss": 0.5609,
3739
+ "step": 583
3740
+ },
3741
+ {
3742
+ "epoch": 1.75,
3743
+ "learning_rate": 0.00025907320518332825,
3744
+ "loss": 0.4686,
3745
+ "step": 584
3746
+ },
3747
+ {
3748
+ "epoch": 1.75,
3749
+ "learning_rate": 0.00025821750883574257,
3750
+ "loss": 0.2934,
3751
+ "step": 585
3752
+ },
3753
+ {
3754
+ "epoch": 1.75,
3755
+ "learning_rate": 0.0002573606465422181,
3756
+ "loss": 0.4577,
3757
+ "step": 586
3758
+ },
3759
+ {
3760
+ "epoch": 1.76,
3761
+ "learning_rate": 0.0002565026354634874,
3762
+ "loss": 0.4982,
3763
+ "step": 587
3764
+ },
3765
+ {
3766
+ "epoch": 1.76,
3767
+ "learning_rate": 0.0002556434927832906,
3768
+ "loss": 0.3524,
3769
+ "step": 588
3770
+ },
3771
+ {
3772
+ "epoch": 1.76,
3773
+ "learning_rate": 0.00025478323570803053,
3774
+ "loss": 0.4743,
3775
+ "step": 589
3776
+ },
3777
+ {
3778
+ "epoch": 1.77,
3779
+ "learning_rate": 0.0002539218814664288,
3780
+ "loss": 0.6607,
3781
+ "step": 590
3782
+ },
3783
+ {
3784
+ "epoch": 1.77,
3785
+ "learning_rate": 0.0002530594473091802,
3786
+ "loss": 0.2837,
3787
+ "step": 591
3788
+ },
3789
+ {
3790
+ "epoch": 1.77,
3791
+ "learning_rate": 0.00025219595050860746,
3792
+ "loss": 0.57,
3793
+ "step": 592
3794
+ },
3795
+ {
3796
+ "epoch": 1.78,
3797
+ "learning_rate": 0.00025133140835831535,
3798
+ "loss": 0.4833,
3799
+ "step": 593
3800
+ },
3801
+ {
3802
+ "epoch": 1.78,
3803
+ "learning_rate": 0.00025046583817284434,
3804
+ "loss": 0.6797,
3805
+ "step": 594
3806
+ },
3807
+ {
3808
+ "epoch": 1.78,
3809
+ "learning_rate": 0.0002495992572873237,
3810
+ "loss": 0.4087,
3811
+ "step": 595
3812
+ },
3813
+ {
3814
+ "epoch": 1.78,
3815
+ "learning_rate": 0.0002487316830571244,
3816
+ "loss": 0.4091,
3817
+ "step": 596
3818
+ },
3819
+ {
3820
+ "epoch": 1.79,
3821
+ "learning_rate": 0.0002478631328575116,
3822
+ "loss": 0.2776,
3823
+ "step": 597
3824
+ },
3825
+ {
3826
+ "epoch": 1.79,
3827
+ "learning_rate": 0.0002469936240832965,
3828
+ "loss": 0.4363,
3829
+ "step": 598
3830
+ },
3831
+ {
3832
+ "epoch": 1.79,
3833
+ "learning_rate": 0.00024612317414848806,
3834
+ "loss": 0.6171,
3835
+ "step": 599
3836
+ },
3837
+ {
3838
+ "epoch": 1.8,
3839
+ "learning_rate": 0.0002452518004859445,
3840
+ "loss": 0.521,
3841
+ "step": 600
3842
+ },
3843
+ {
3844
+ "epoch": 1.8,
3845
+ "eval_loss": 0.5094448328018188,
3846
+ "eval_runtime": 19.6839,
3847
+ "eval_samples_per_second": 82.758,
3848
+ "eval_steps_per_second": 41.404,
3849
+ "step": 600
3850
+ },
3851
+ {
3852
+ "epoch": 1.8,
3853
+ "learning_rate": 0.00024437952054702354,
3854
+ "loss": 0.5103,
3855
+ "step": 601
3856
+ },
3857
+ {
3858
+ "epoch": 1.8,
3859
+ "learning_rate": 0.00024350635180123349,
3860
+ "loss": 0.462,
3861
+ "step": 602
3862
+ },
3863
+ {
3864
+ "epoch": 1.81,
3865
+ "learning_rate": 0.0002426323117358832,
3866
+ "loss": 0.471,
3867
+ "step": 603
3868
+ },
3869
+ {
3870
+ "epoch": 1.81,
3871
+ "learning_rate": 0.00024175741785573176,
3872
+ "loss": 0.4568,
3873
+ "step": 604
3874
+ },
3875
+ {
3876
+ "epoch": 1.81,
3877
+ "learning_rate": 0.0002408816876826378,
3878
+ "loss": 0.4035,
3879
+ "step": 605
3880
+ },
3881
+ {
3882
+ "epoch": 1.81,
3883
+ "learning_rate": 0.0002400051387552089,
3884
+ "loss": 0.5365,
3885
+ "step": 606
3886
+ },
3887
+ {
3888
+ "epoch": 1.82,
3889
+ "learning_rate": 0.00023912778862845014,
3890
+ "loss": 0.5665,
3891
+ "step": 607
3892
+ },
3893
+ {
3894
+ "epoch": 1.82,
3895
+ "learning_rate": 0.00023824965487341247,
3896
+ "loss": 0.4075,
3897
+ "step": 608
3898
+ },
3899
+ {
3900
+ "epoch": 1.82,
3901
+ "learning_rate": 0.00023737075507684102,
3902
+ "loss": 0.4131,
3903
+ "step": 609
3904
+ },
3905
+ {
3906
+ "epoch": 1.83,
3907
+ "learning_rate": 0.00023649110684082256,
3908
+ "loss": 0.5442,
3909
+ "step": 610
3910
+ },
3911
+ {
3912
+ "epoch": 1.83,
3913
+ "learning_rate": 0.00023561072778243336,
3914
+ "loss": 0.7304,
3915
+ "step": 611
3916
+ },
3917
+ {
3918
+ "epoch": 1.83,
3919
+ "learning_rate": 0.00023472963553338613,
3920
+ "loss": 0.2623,
3921
+ "step": 612
3922
+ },
3923
+ {
3924
+ "epoch": 1.84,
3925
+ "learning_rate": 0.00023384784773967674,
3926
+ "loss": 0.3267,
3927
+ "step": 613
3928
+ },
3929
+ {
3930
+ "epoch": 1.84,
3931
+ "learning_rate": 0.00023296538206123133,
3932
+ "loss": 0.503,
3933
+ "step": 614
3934
+ },
3935
+ {
3936
+ "epoch": 1.84,
3937
+ "learning_rate": 0.00023208225617155206,
3938
+ "loss": 0.4289,
3939
+ "step": 615
3940
+ },
3941
+ {
3942
+ "epoch": 1.84,
3943
+ "learning_rate": 0.00023119848775736358,
3944
+ "loss": 0.4469,
3945
+ "step": 616
3946
+ },
3947
+ {
3948
+ "epoch": 1.85,
3949
+ "learning_rate": 0.00023031409451825853,
3950
+ "loss": 0.4354,
3951
+ "step": 617
3952
+ },
3953
+ {
3954
+ "epoch": 1.85,
3955
+ "learning_rate": 0.00022942909416634325,
3956
+ "loss": 0.4072,
3957
+ "step": 618
3958
+ },
3959
+ {
3960
+ "epoch": 1.85,
3961
+ "learning_rate": 0.00022854350442588287,
3962
+ "loss": 0.538,
3963
+ "step": 619
3964
+ },
3965
+ {
3966
+ "epoch": 1.86,
3967
+ "learning_rate": 0.00022765734303294664,
3968
+ "loss": 0.32,
3969
+ "step": 620
3970
+ },
3971
+ {
3972
+ "epoch": 1.86,
3973
+ "eval_loss": 0.49946072697639465,
3974
+ "eval_runtime": 19.6626,
3975
+ "eval_samples_per_second": 82.848,
3976
+ "eval_steps_per_second": 41.449,
3977
+ "step": 620
3978
+ },
3979
+ {
3980
+ "epoch": 1.86,
3981
+ "learning_rate": 0.00022677062773505236,
3982
+ "loss": 0.3885,
3983
+ "step": 621
3984
+ },
3985
+ {
3986
+ "epoch": 1.86,
3987
+ "learning_rate": 0.00022588337629081106,
3988
+ "loss": 0.3282,
3989
+ "step": 622
3990
+ },
3991
+ {
3992
+ "epoch": 1.87,
3993
+ "learning_rate": 0.0002249956064695717,
3994
+ "loss": 0.4796,
3995
+ "step": 623
3996
+ },
3997
+ {
3998
+ "epoch": 1.87,
3999
+ "learning_rate": 0.0002241073360510646,
4000
+ "loss": 0.3912,
4001
+ "step": 624
4002
+ },
4003
+ {
4004
+ "epoch": 1.87,
4005
+ "learning_rate": 0.00022321858282504605,
4006
+ "loss": 0.414,
4007
+ "step": 625
4008
+ },
4009
+ {
4010
+ "epoch": 1.87,
4011
+ "learning_rate": 0.0002223293645909416,
4012
+ "loss": 0.3802,
4013
+ "step": 626
4014
+ },
4015
+ {
4016
+ "epoch": 1.88,
4017
+ "learning_rate": 0.00022143969915748959,
4018
+ "loss": 0.3726,
4019
+ "step": 627
4020
+ },
4021
+ {
4022
+ "epoch": 1.88,
4023
+ "learning_rate": 0.00022054960434238487,
4024
+ "loss": 0.6393,
4025
+ "step": 628
4026
+ },
4027
+ {
4028
+ "epoch": 1.88,
4029
+ "learning_rate": 0.00021965909797192143,
4030
+ "loss": 0.3873,
4031
+ "step": 629
4032
+ },
4033
+ {
4034
+ "epoch": 1.89,
4035
+ "learning_rate": 0.00021876819788063588,
4036
+ "loss": 0.3838,
4037
+ "step": 630
4038
+ },
4039
+ {
4040
+ "epoch": 1.89,
4041
+ "learning_rate": 0.00021787692191094986,
4042
+ "loss": 0.4525,
4043
+ "step": 631
4044
+ },
4045
+ {
4046
+ "epoch": 1.89,
4047
+ "learning_rate": 0.00021698528791281297,
4048
+ "loss": 0.5156,
4049
+ "step": 632
4050
+ },
4051
+ {
4052
+ "epoch": 1.9,
4053
+ "learning_rate": 0.00021609331374334523,
4054
+ "loss": 0.4736,
4055
+ "step": 633
4056
+ },
4057
+ {
4058
+ "epoch": 1.9,
4059
+ "learning_rate": 0.00021520101726647922,
4060
+ "loss": 0.4195,
4061
+ "step": 634
4062
+ },
4063
+ {
4064
+ "epoch": 1.9,
4065
+ "learning_rate": 0.00021430841635260275,
4066
+ "loss": 0.4194,
4067
+ "step": 635
4068
+ },
4069
+ {
4070
+ "epoch": 1.9,
4071
+ "learning_rate": 0.0002134155288782005,
4072
+ "loss": 0.5804,
4073
+ "step": 636
4074
+ },
4075
+ {
4076
+ "epoch": 1.91,
4077
+ "learning_rate": 0.0002125223727254964,
4078
+ "loss": 0.5437,
4079
+ "step": 637
4080
+ },
4081
+ {
4082
+ "epoch": 1.91,
4083
+ "learning_rate": 0.00021162896578209517,
4084
+ "loss": 0.3672,
4085
+ "step": 638
4086
+ },
4087
+ {
4088
+ "epoch": 1.91,
4089
+ "learning_rate": 0.0002107353259406243,
4090
+ "loss": 0.4619,
4091
+ "step": 639
4092
+ },
4093
+ {
4094
+ "epoch": 1.92,
4095
+ "learning_rate": 0.00020984147109837564,
4096
+ "loss": 0.3984,
4097
+ "step": 640
4098
+ },
4099
+ {
4100
+ "epoch": 1.92,
4101
+ "eval_loss": 0.48778846859931946,
4102
+ "eval_runtime": 19.6743,
4103
+ "eval_samples_per_second": 82.798,
4104
+ "eval_steps_per_second": 41.425,
4105
+ "step": 640
4106
+ },
4107
+ {
4108
+ "epoch": 1.92,
4109
+ "learning_rate": 0.00020894741915694685,
4110
+ "loss": 0.3651,
4111
+ "step": 641
4112
+ },
4113
+ {
4114
+ "epoch": 1.92,
4115
+ "learning_rate": 0.00020805318802188304,
4116
+ "loss": 0.4151,
4117
+ "step": 642
4118
+ },
4119
+ {
4120
+ "epoch": 1.93,
4121
+ "learning_rate": 0.00020715879560231811,
4122
+ "loss": 0.3463,
4123
+ "step": 643
4124
+ },
4125
+ {
4126
+ "epoch": 1.93,
4127
+ "learning_rate": 0.00020626425981061606,
4128
+ "loss": 0.3934,
4129
+ "step": 644
4130
+ },
4131
+ {
4132
+ "epoch": 1.93,
4133
+ "learning_rate": 0.00020536959856201227,
4134
+ "loss": 0.3284,
4135
+ "step": 645
4136
+ },
4137
+ {
4138
+ "epoch": 1.93,
4139
+ "learning_rate": 0.00020447482977425466,
4140
+ "loss": 0.3231,
4141
+ "step": 646
4142
+ },
4143
+ {
4144
+ "epoch": 1.94,
4145
+ "learning_rate": 0.00020357997136724487,
4146
+ "loss": 0.5848,
4147
+ "step": 647
4148
+ },
4149
+ {
4150
+ "epoch": 1.94,
4151
+ "learning_rate": 0.0002026850412626795,
4152
+ "loss": 0.4391,
4153
+ "step": 648
4154
+ },
4155
+ {
4156
+ "epoch": 1.94,
4157
+ "learning_rate": 0.00020179005738369096,
4158
+ "loss": 0.4436,
4159
+ "step": 649
4160
+ },
4161
+ {
4162
+ "epoch": 1.95,
4163
+ "learning_rate": 0.0002008950376544887,
4164
+ "loss": 0.5285,
4165
+ "step": 650
4166
+ },
4167
+ {
4168
+ "epoch": 1.95,
4169
+ "learning_rate": 0.0002,
4170
+ "loss": 0.4018,
4171
+ "step": 651
4172
+ },
4173
+ {
4174
+ "epoch": 1.95,
4175
+ "learning_rate": 0.00019910496234551133,
4176
+ "loss": 0.4176,
4177
+ "step": 652
4178
+ },
4179
+ {
4180
+ "epoch": 1.96,
4181
+ "learning_rate": 0.0001982099426163091,
4182
+ "loss": 0.2915,
4183
+ "step": 653
4184
+ },
4185
+ {
4186
+ "epoch": 1.96,
4187
+ "learning_rate": 0.00019731495873732055,
4188
+ "loss": 0.4308,
4189
+ "step": 654
4190
+ },
4191
+ {
4192
+ "epoch": 1.96,
4193
+ "learning_rate": 0.00019642002863275518,
4194
+ "loss": 0.3675,
4195
+ "step": 655
4196
+ },
4197
+ {
4198
+ "epoch": 1.96,
4199
+ "learning_rate": 0.00019552517022574541,
4200
+ "loss": 0.3477,
4201
+ "step": 656
4202
+ },
4203
+ {
4204
+ "epoch": 1.97,
4205
+ "learning_rate": 0.0001946304014379878,
4206
+ "loss": 0.3578,
4207
+ "step": 657
4208
+ },
4209
+ {
4210
+ "epoch": 1.97,
4211
+ "learning_rate": 0.000193735740189384,
4212
+ "loss": 0.4722,
4213
+ "step": 658
4214
+ },
4215
+ {
4216
+ "epoch": 1.97,
4217
+ "learning_rate": 0.0001928412043976819,
4218
+ "loss": 0.4991,
4219
+ "step": 659
4220
+ },
4221
+ {
4222
+ "epoch": 1.98,
4223
+ "learning_rate": 0.00019194681197811704,
4224
+ "loss": 0.3799,
4225
+ "step": 660
4226
+ },
4227
+ {
4228
+ "epoch": 1.98,
4229
+ "eval_loss": 0.4826065003871918,
4230
+ "eval_runtime": 19.6662,
4231
+ "eval_samples_per_second": 82.832,
4232
+ "eval_steps_per_second": 41.442,
4233
+ "step": 660
4234
+ },
4235
+ {
4236
+ "epoch": 1.98,
4237
+ "learning_rate": 0.0001910525808430532,
4238
+ "loss": 0.4474,
4239
+ "step": 661
4240
+ },
4241
+ {
4242
+ "epoch": 1.98,
4243
+ "learning_rate": 0.00019015852890162438,
4244
+ "loss": 0.2897,
4245
+ "step": 662
4246
+ },
4247
+ {
4248
+ "epoch": 1.99,
4249
+ "learning_rate": 0.00018926467405937567,
4250
+ "loss": 0.3398,
4251
+ "step": 663
4252
+ },
4253
+ {
4254
+ "epoch": 1.99,
4255
+ "learning_rate": 0.00018837103421790485,
4256
+ "loss": 0.4521,
4257
+ "step": 664
4258
+ },
4259
+ {
4260
+ "epoch": 1.99,
4261
+ "learning_rate": 0.00018747762727450363,
4262
+ "loss": 0.5863,
4263
+ "step": 665
4264
+ },
4265
+ {
4266
+ "epoch": 1.99,
4267
+ "learning_rate": 0.0001865844711217995,
4268
+ "loss": 0.5822,
4269
+ "step": 666
4270
+ },
4271
+ {
4272
+ "epoch": 2.0,
4273
+ "learning_rate": 0.00018569158364739735,
4274
+ "loss": 0.4556,
4275
+ "step": 667
4276
+ },
4277
+ {
4278
+ "epoch": 2.0,
4279
+ "learning_rate": 0.00018479898273352082,
4280
+ "loss": 0.3302,
4281
+ "step": 668
4282
+ }
4283
+ ],
4284
+ "logging_steps": 1,
4285
+ "max_steps": 1002,
4286
+ "num_train_epochs": 3,
4287
+ "save_steps": 500,
4288
+ "total_flos": 1.8897791269868667e+18,
4289
+ "trial_name": null,
4290
+ "trial_params": null
4291
+ }
checkpoint-668/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:437823b67a8e71dde1f898ebf1534afc55a51ee86d8735c8e1f03954c766c4a4
3
+ size 4475
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.1",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "pretraining_tp": 1,
19
+ "quantization_config": {
20
+ "bnb_4bit_compute_dtype": "bfloat16",
21
+ "bnb_4bit_quant_type": "nf4",
22
+ "bnb_4bit_use_double_quant": true,
23
+ "llm_int8_enable_fp32_cpu_offload": false,
24
+ "llm_int8_has_fp16_weight": false,
25
+ "llm_int8_skip_modules": null,
26
+ "llm_int8_threshold": 6.0,
27
+ "load_in_4bit": true,
28
+ "load_in_8bit": false,
29
+ "quant_method": "bitsandbytes"
30
+ },
31
+ "rms_norm_eps": 1e-05,
32
+ "rope_scaling": null,
33
+ "rope_theta": 10000.0,
34
+ "sliding_window": 4096,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "bfloat16",
37
+ "transformers_version": "4.34.1",
38
+ "use_cache": false,
39
+ "vocab_size": 32000
40
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "legacy": true,
35
+ "model_max_length": 1000000000000000019884624838656,
36
+ "pad_token": "</s>",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "trust_remote_code": false,
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": true,
43
+ "use_fast": true
44
+ }