File size: 116,556 Bytes
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d148ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b800b
 
c56cca2
97c3db9
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b800b
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d148ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c56cca2
 
b6b800b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d641
b6b800b
 
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b800b
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d641
b6b800b
 
 
 
 
 
 
 
 
 
c56cca2
b6b800b
 
 
c56cca2
b6b800b
c56cca2
 
 
b6b800b
 
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b800b
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b800b
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf135db
 
c56cca2
b6b800b
c56cca2
 
b6b800b
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9aab49
c56cca2
 
 
 
 
c9aab49
 
c56cca2
 
 
b6b800b
 
c56cca2
 
 
 
c64d641
c56cca2
c64d641
c56cca2
 
013ac0b
c56cca2
9a4aa0b
c56cca2
 
 
c2b09ed
c56cca2
9a4aa0b
c56cca2
 
 
 
 
 
 
 
 
 
 
 
 
c9aab49
 
c56cca2
 
c9aab49
 
c56cca2
 
 
 
 
 
 
 
b6b800b
3f8233d
bf135db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 
 Based on timm code base
 https://github.com/rwightman/pytorch-image-models/tree/master/timm
"""

"""
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
"""
 Copyright (c) 2023, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
# Copyright (c) 2024 Black Forest Labs.
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates.
# SPDX-License-Identifier: Apache-2.0
#
# This file has been modified by ByteDance Ltd. and/or its affiliates. on 2025-05-20.
#
# Original file was released under Apache-2.0, with the full license text
# available at https://github.com/black-forest-labs/flux/blob/main/LICENSE.
#
# This modified file is released under the same license.


"""
 * Copyright (c) 2023, salesforce.com, inc.
 * All rights reserved.
 * SPDX-License-Identifier: BSD-3-Clause
 * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
 * By Junnan Li
 * Based on huggingface code base
 * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
"""

from dataclasses import dataclass

import torch
from einops import rearrange
from torch import Tensor, nn
from safetensors.torch import load_file as load_sft

import torch.nn as nn
import torch
# import math
# from torchvision import transforms
import os
# from timm.models import create_model
from typing import Any, Dict, List, Optional, Union
from transformers import LlamaTokenizer
# from torchvision.transforms.functional import pil_to_tensor

# import torch
from PIL import Image
from torchvision import transforms

import torch.utils.checkpoint as checkpoint

DIFFUSION_NAME = 'stabilityai/stable-diffusion-2-1-unclip'
#from diffusers import StableUnCLIPImg2ImgPipeline

import logging

import torch
import torch.distributed as dist
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
import numpy as np
from functools import partial
from einops import rearrange

import contextlib
import logging
import os
import time
import datetime

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.nn.functional as F

from timm.models.layers import drop_path, to_2tuple, trunc_normal_

from transformers import BertTokenizer

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.vision_transformer import _cfg, PatchEmbed
from timm.models.registry import register_model
from timm.models.layers import trunc_normal_, DropPath
from timm.models.helpers import named_apply, adapt_input_conv

import math
import os
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Dict, Any

import torch
from torch import Tensor, device, dtype, nn
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
import torch.nn.functional as F
import numpy as np



from transformers.activations import ACT2FN
from transformers.file_utils import (
    ModelOutput, )
from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPoolingAndCrossAttentions,
    CausalLMOutputWithCrossAttentions,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    NextSentencePredictorOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from transformers.modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)
from transformers.models.bert.configuration_bert import BertConfig



@dataclass
class AutoEncoderParams:
    resolution: int
    in_channels: int
    downsample: int
    ch: int
    out_ch: int
    ch_mult: list[int]
    num_res_blocks: int
    z_channels: int
    scale_factor: float
    shift_factor: float


def swish(x: Tensor) -> Tensor:
    return x * torch.sigmoid(x)


class AttnBlock(nn.Module):
    def __init__(self, in_channels: int):
        super().__init__()
        self.in_channels = in_channels

        self.norm = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)

        self.q = nn.Conv2d(in_channels, in_channels, kernel_size=1)
        self.k = nn.Conv2d(in_channels, in_channels, kernel_size=1)
        self.v = nn.Conv2d(in_channels, in_channels, kernel_size=1)
        self.proj_out = nn.Conv2d(in_channels, in_channels, kernel_size=1)

    def attention(self, h_: Tensor) -> Tensor:
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        b, c, h, w = q.shape
        q = rearrange(q, "b c h w -> b 1 (h w) c").contiguous()
        k = rearrange(k, "b c h w -> b 1 (h w) c").contiguous()
        v = rearrange(v, "b c h w -> b 1 (h w) c").contiguous()
        h_ = nn.functional.scaled_dot_product_attention(q, k, v)

        return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)

    def forward(self, x: Tensor) -> Tensor:
        return x + self.proj_out(self.attention(x))


class ResnetBlock(nn.Module):
    def __init__(self, in_channels: int, out_channels: int):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels

        self.norm1 = nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.norm2 = nn.GroupNorm(num_groups=32, num_channels=out_channels, eps=1e-6, affine=True)
        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
        if self.in_channels != self.out_channels:
            self.nin_shortcut = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        h = x
        h = self.norm1(h)
        h = swish(h)
        h = self.conv1(h)

        h = self.norm2(h)
        h = swish(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            x = self.nin_shortcut(x)

        return x + h


class Downsample(nn.Module):
    def __init__(self, in_channels: int):
        super().__init__()
        # no asymmetric padding in torch conv, must do it ourselves
        self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)

    def forward(self, x: Tensor):
        pad = (0, 1, 0, 1)
        x = nn.functional.pad(x, pad, mode="constant", value=0)
        x = self.conv(x)
        return x


class Upsample(nn.Module):
    def __init__(self, in_channels: int):
        super().__init__()
        self.conv = nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1)

    def forward(self, x: Tensor):
        x = nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        x = self.conv(x)
        return x


class Encoder(nn.Module):
    def __init__(
        self,
        resolution: int,
        in_channels: int,
        ch: int,
        ch_mult: list[int],
        num_res_blocks: int,
        z_channels: int,
    ):
        super().__init__()
        self.ch = ch
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        # downsampling
        self.conv_in = nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1)

        curr_res = resolution
        in_ch_mult = (1,) + tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        block_in = self.ch
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch * in_ch_mult[i_level]
            block_out = ch * ch_mult[i_level]
            for _ in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
                block_in = block_out
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
                down.downsample = Downsample(block_in)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)

        # end
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        self.conv_out = nn.Conv2d(block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1)

    def forward(self, x: Tensor) -> Tensor:
        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1])
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h)
        # end
        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        return h


class Decoder(nn.Module):
    def __init__(
        self,
        ch: int,
        out_ch: int,
        ch_mult: list[int],
        num_res_blocks: int,
        in_channels: int,
        resolution: int,
        z_channels: int,
    ):
        super().__init__()
        self.ch = ch
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        self.ffactor = 2 ** (self.num_resolutions - 1)

        # compute in_ch_mult, block_in and curr_res at lowest res
        block_in = ch * ch_mult[self.num_resolutions - 1]
        curr_res = resolution // 2 ** (self.num_resolutions - 1)
        self.z_shape = (1, z_channels, curr_res, curr_res)

        # z to block_in
        self.conv_in = nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in)
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            for _ in range(self.num_res_blocks + 1):
                block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
                block_in = block_out
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in)
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        # end
        self.norm_out = nn.GroupNorm(num_groups=32, num_channels=block_in, eps=1e-6, affine=True)
        self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)

    def forward(self, z: Tensor) -> Tensor:
        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks + 1):
                h = self.up[i_level].block[i_block](h)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        h = self.norm_out(h)
        h = swish(h)
        h = self.conv_out(h)
        return h


class DiagonalGaussian(nn.Module):
    def __init__(self, sample: bool = True, chunk_dim: int = 1):
        super().__init__()
        self.sample = sample
        self.chunk_dim = chunk_dim

    def forward(self, z: Tensor) -> Tensor:
        mean, logvar = torch.chunk(z, 2, dim=self.chunk_dim)
        if self.sample:
            std = torch.exp(0.5 * logvar)
            return mean + std * torch.randn_like(mean)
        else:
            return mean


class AutoEncoder(nn.Module):
    def __init__(self, params: AutoEncoderParams):
        super().__init__()
        self.encoder = Encoder(
            resolution=params.resolution,
            in_channels=params.in_channels,
            ch=params.ch,
            ch_mult=params.ch_mult,
            num_res_blocks=params.num_res_blocks,
            z_channels=params.z_channels,
        )
        self.decoder = Decoder(
            resolution=params.resolution,
            in_channels=params.in_channels,
            ch=params.ch,
            out_ch=params.out_ch,
            ch_mult=params.ch_mult,
            num_res_blocks=params.num_res_blocks,
            z_channels=params.z_channels,
        )
        self.reg = DiagonalGaussian()

        self.scale_factor = params.scale_factor
        self.shift_factor = params.shift_factor

    def encode(self, x: Tensor) -> Tensor:
        z = self.reg(self.encoder(x))
        z = self.scale_factor * (z - self.shift_factor)
        return z

    def decode(self, z: Tensor) -> Tensor:
        z = z / self.scale_factor + self.shift_factor
        return self.decoder(z)

    def forward(self, x: Tensor) -> Tensor:
        return self.decode(self.encode(x))


def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
    if len(missing) > 0 and len(unexpected) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
        print("\n" + "-" * 79 + "\n")
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))
    elif len(missing) > 0:
        print(f"Got {len(missing)} missing keys:\n\t" + "\n\t".join(missing))
    elif len(unexpected) > 0:
        print(f"Got {len(unexpected)} unexpected keys:\n\t" + "\n\t".join(unexpected))


def load_ae(local_path: str) -> AutoEncoder:
    ae_params = AutoEncoderParams(
            resolution=256,
            in_channels=3,
            downsample=8,
            ch=128,
            out_ch=3,
            ch_mult=[1, 2, 4, 4],
            num_res_blocks=2,
            z_channels=16,
            scale_factor=0.3611,
            shift_factor=0.1159,
    )

    # Loading the autoencoder
    ae = AutoEncoder(ae_params)

    if local_path is not None:
        sd = load_sft(local_path)
        missing, unexpected = ae.load_state_dict(sd, strict=False, assign=True)
        print_load_warning(missing, unexpected)
    return ae, ae_params

#torch.set_printoptions(profile="full")

class DropPathEvaVit(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPathEvaVit, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return 'p={}'.format(self.drop_prob)


class MlpEvaVit(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement
        x = self.fc2(x)
        x = self.drop(x)
        return x


class AttentionEvaVit(nn.Module):
    def __init__(self,
                 dim,
                 num_heads=8,
                 qkv_bias=False,
                 qk_scale=None,
                 attn_drop=0.,
                 proj_drop=0.,
                 window_size=None,
                 attn_head_dim=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim**-0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        if window_size:
            self.window_size = window_size
            self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
            self.relative_position_bias_table = nn.Parameter(torch.zeros(self.num_relative_distance,
                                                                         num_heads))  # 2*Wh-1 * 2*Ww-1, nH
            # cls to token & token 2 cls & cls to cls

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(window_size[0])
            coords_w = torch.arange(window_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * window_size[1] - 1
            relative_position_index = \
                torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
            relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1

            self.register_buffer("relative_position_index", relative_position_index)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, rel_pos_bias=None):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        if self.relative_position_bias_table is not None:
            relative_position_bias = \
                self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                    self.window_size[0] * self.window_size[1] + 1,
                    self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)

        if rel_pos_bias is not None:
            attn = attn + rel_pos_bias

        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class BlockEvaVit(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop=0.,
                 attn_drop=0.,
                 drop_path=0.,
                 init_values=None,
                 act_layer=nn.GELU,
                 norm_layer=nn.LayerNorm,
                 window_size=None,
                 attn_head_dim=None):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = AttentionEvaVit(dim,
                              num_heads=num_heads,
                              qkv_bias=qkv_bias,
                              qk_scale=qk_scale,
                              attn_drop=attn_drop,
                              proj_drop=drop,
                              window_size=window_size,
                              attn_head_dim=attn_head_dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPathEvaVit(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = MlpEvaVit(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if init_values is not None and init_values > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x, rel_pos_bias=None):
        if self.gamma_1 is None:
            x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        return x


class PatchEmbedEvaVit(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, x, **kwargs):
        B, C, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class RelativePositionBiasEvaVit(nn.Module):
    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(torch.zeros(self.num_relative_distance,
                                                                     num_heads))  # 2*Wh-1 * 2*Ww-1, nH
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = \
            torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
        relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1

        self.register_buffer("relative_position_index", relative_position_index)

        # trunc_normal_(self.relative_position_bias_table, std=.02)

    def forward(self):
        relative_position_bias = \
            self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1] + 1,
                self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
        return relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww


class VisionTransformerEvaVit(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self,
                 img_size=224,
                 patch_size=16,
                 in_chans=3,
                 num_classes=1000,
                 embed_dim=768,
                 depth=12,
                 num_heads=12,
                 mlp_ratio=4.,
                 qkv_bias=False,
                 qk_scale=None,
                 drop_rate=0.,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_layer=nn.LayerNorm,
                 init_values=None,
                 use_abs_pos_emb=True,
                 use_rel_pos_bias=False,
                 use_shared_rel_pos_bias=False,
                 use_mean_pooling=True,
                 init_scale=0.001,
                 use_checkpoint=False):
        super().__init__()
        self.image_size = img_size
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        self.patch_embed = PatchEmbedEvaVit(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        if use_abs_pos_emb:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        else:
            self.pos_embed = None
        self.pos_drop = nn.Dropout(p=drop_rate)

        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBiasEvaVit(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
        else:
            self.rel_pos_bias = None
        self.use_checkpoint = use_checkpoint

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.use_rel_pos_bias = use_rel_pos_bias
        self.blocks = nn.ModuleList([
            BlockEvaVit(dim=embed_dim,
                  num_heads=num_heads,
                  mlp_ratio=mlp_ratio,
                  qkv_bias=qkv_bias,
                  qk_scale=qk_scale,
                  drop=drop_rate,
                  attn_drop=attn_drop_rate,
                  drop_path=dpr[i],
                  norm_layer=norm_layer,
                  init_values=init_values,
                  window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None) for i in range(depth)
        ])
        #         self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
        #         self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
        #         self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()

        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        # trunc_normal_(self.mask_token, std=.02)
        #         if isinstance(self.head, nn.Linear):
        #             trunc_normal_(self.head.weight, std=.02)
        self.apply(self._init_weights)
        self.fix_init_weight()
        self.ln_vision =  nn.LayerNorm(self.num_features)

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    _initialize_weights = _init_weights
    
    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        x = self.patch_embed(x)
        batch_size, seq_len, _ = x.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
        for blk in self.blocks:
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, rel_pos_bias)
            else:
                x = blk(x, rel_pos_bias)
        return x

    def forward(self, x):
        x = self.forward_features(x)
        #         x = self.head(x)
        return x

    def get_intermediate_layers(self, x):
        x = self.patch_embed(x)
        batch_size, seq_len, _ = x.size()

        cls_tokens = self.cls_token.expand(batch_size, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        features = []
        rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
        for blk in self.blocks:
            x = blk(x, rel_pos_bias)
            features.append(x)

        return features

    def get_num_layer(self, var_name=""):
        if var_name in ("cls_token", "mask_token", "pos_embed"):
            return 0
        elif var_name.startswith("patch_embed"):
            return 0
        elif var_name.startswith("rel_pos_bias"):
            return len(self.blocks) - 1
        elif var_name.startswith("blocks"):
            layer_id = int(var_name.split('.')[1])
            return layer_id + 1
        else:
            return len(self.blocks)


def create_eva_vit_g(img_size=224, drop_path_rate=0.4, use_checkpoint=False, precision="fp16",         cache_dir="./",):
    model = VisionTransformerEvaVit(
        img_size=img_size,
        patch_size=14,
        use_mean_pooling=False,
        embed_dim=1408,
        depth=39,
        num_heads=1408 // 88,
        mlp_ratio=4.3637,
        qkv_bias=True,
        drop_path_rate=drop_path_rate,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        use_checkpoint=use_checkpoint,
    )
    cache_path = cache_dir
    state_dict = torch.load(cache_path+"/eva_vit_g.pth", map_location="cpu")    
    interpolate_pos_embed(model, state_dict)

    incompatible_keys = model.load_state_dict(state_dict, strict=False)
    #print(incompatible_keys)

    return model

class BertEmbeddings(nn.Module):
    """Construct the embeddings from word and position embeddings."""
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")

        self.config = config

    def forward(
        self,
        input_ids=None,
        position_ids=None,
        query_embeds=None,
        past_key_values_length=0,
    ):
        if input_ids is not None:
            seq_length = input_ids.size()[1]
        else:
            seq_length = 0

        if position_ids is None:
            position_ids = self.position_ids[:, past_key_values_length:seq_length + past_key_values_length].clone()

        if input_ids is not None:
            embeddings = self.word_embeddings(input_ids)
            if self.position_embedding_type == "absolute":
                position_embeddings = self.position_embeddings(position_ids)
                embeddings = embeddings + position_embeddings

            if query_embeds is not None:
                embeddings = torch.cat((query_embeds, embeddings), dim=1)
                #print(query_embeds.shape, embeddings.shape)
        else:
            embeddings = query_embeds

        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


class BertSelfAttention(nn.Module):
    def __init__(self, config, is_cross_attention):
        super().__init__()
        self.config = config
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError("The hidden size (%d) is not a multiple of the number of attention "
                             "heads (%d)" % (config.hidden_size, config.num_attention_heads))

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        if is_cross_attention:
            self.key = nn.Linear(config.encoder_width, self.all_head_size)
            self.value = nn.Linear(config.encoder_width, self.all_head_size)
        else:
            self.key = nn.Linear(config.hidden_size, self.all_head_size)
            self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
        self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
        if (self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query"):
            self.max_position_embeddings = config.max_position_embeddings
            self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
        self.save_attention = False

    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def save_attention_map(self, attention_map):
        self.attention_map = attention_map

    def get_attention_map(self):
        return self.attention_map

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (
            self.num_attention_heads,
            self.attention_head_size,
        )
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        is_cross_attention = encoder_hidden_states is not None

        if is_cross_attention:
            key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
            value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
            #print(key_layer.shape, value_layer.shape)
            attention_mask = encoder_attention_mask
        elif past_key_value is not None:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))
            key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
            value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
            #print(past_key_value[0].shape, key_layer.shape)
        else:
            key_layer = self.transpose_for_scores(self.key(hidden_states))
            value_layer = self.transpose_for_scores(self.value(hidden_states))

        mixed_query_layer = self.query(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        # if  past_key_value is not None:
        #     print(query_layer.shape)

        past_key_value = (key_layer, value_layer)
        #print(key_layer.shape, value_layer.shape)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        #if is_cross_attention:
        # if attention_scores.shape[2] == 32:
        #     attention_scores_save = attention_scores[0].detach().cpu().numpy()
        #     print(attention_scores_save.shape)
        #     np.save('attention_scores_causal_text_child.npy', attention_scores_save)

        if (self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query"):
            seq_length = hidden_states.size()[1]
            position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
            position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
            distance = position_ids_l - position_ids_r
            positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
            positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility

            if self.position_embedding_type == "relative_key":
                relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                attention_scores = attention_scores + relative_position_scores
            elif self.position_embedding_type == "relative_key_query":
                relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
                relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
                attention_scores = (attention_scores + relative_position_scores_query + relative_position_scores_key)

        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        if is_cross_attention and self.save_attention:
            self.save_attention_map(attention_probs)
            attention_probs.register_hook(self.save_attn_gradients)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs_dropped = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs_dropped = attention_probs_dropped * head_mask

        context_layer = torch.matmul(attention_probs_dropped, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = ((context_layer, attention_probs) if output_attentions else (context_layer, ))

        outputs = outputs + (past_key_value, )
        return outputs


class BertSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
    def __init__(self, config, is_cross_attention=False):
        super().__init__()
        self.self = BertSelfAttention(config, is_cross_attention)
        self.output = BertSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads,
            self.self.num_attention_heads,
            self.self.attention_head_size,
            self.pruned_heads,
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = (self.self.attention_head_size * self.self.num_attention_heads)
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            past_key_value,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)

        outputs = (attention_output, ) + self_outputs[1:]  # add attentions if we output them
        return outputs


class BertIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertLayer(nn.Module):
    def __init__(self, config, layer_num):
        super().__init__()
        self.config = config
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = BertAttention(config)
        self.layer_num = layer_num
        if (self.config.add_cross_attention and layer_num % self.config.cross_attention_freq == 0):
            self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
            self.has_cross_attention = True
        else:
            self.has_cross_attention = False
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)

        self.intermediate_query = BertIntermediate(config)
        self.output_query = BertOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_value=None,
        output_attentions=False,
        query_length=0,
    ):
        # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
        self_attn_past_key_value = (past_key_value[:2] if past_key_value is not None else None)
        # if past_key_value is not None:
        #     print(hidden_states.shape, attention_mask.shape)
        #print(hidden_states.shape, attention_mask.shape)
        # casual attention for query embeds with self attention
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
            past_key_value=self_attn_past_key_value,
        )
        #print('attention_mask', attention_mask.shape)
        # if attention_mask.shape[-1] == 77:
        #     print('attention_mask', attention_mask[0])
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:-1]

        present_key_value = self_attention_outputs[-1]
        #print(present_key_value[0].shape)

        if query_length > 0:
            query_attention_output = attention_output[:, :query_length, :]

            if self.has_cross_attention:
                assert (encoder_hidden_states is not None), "encoder_hidden_states must be given for cross-attention layers"
                #print(attention_mask.shape)
                cross_attention_outputs = self.crossattention(
                    query_attention_output,
                    attention_mask,
                    head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions=output_attentions,
                )
                query_attention_output = cross_attention_outputs[0]
                outputs = (outputs + cross_attention_outputs[1:-1])  # add cross attentions if we output attention weights

            layer_output = apply_chunking_to_forward(
                self.feed_forward_chunk_query,
                self.chunk_size_feed_forward,
                self.seq_len_dim,
                query_attention_output,
            )
            if attention_output.shape[1] > query_length:
                layer_output_text = apply_chunking_to_forward(
                    self.feed_forward_chunk,
                    self.chunk_size_feed_forward,
                    self.seq_len_dim,
                    attention_output[:, query_length:, :],
                )
                layer_output = torch.cat([layer_output, layer_output_text], dim=1)
        else:
            layer_output = apply_chunking_to_forward(
                self.feed_forward_chunk,
                self.chunk_size_feed_forward,
                self.seq_len_dim,
                attention_output,
            )
        outputs = (layer_output, ) + outputs

        outputs = outputs + (present_key_value, )

        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output

    def feed_forward_chunk_query(self, attention_output):
        intermediate_output = self.intermediate_query(attention_output)
        layer_output = self.output_query(intermediate_output, attention_output)
        return layer_output


class BertEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([BertLayer(config, i) for i in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=True,
        query_length=0,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = (() if output_attentions and self.config.add_cross_attention else None)

        next_decoder_cache = () if use_cache else None

        for i in range(self.config.num_hidden_layers):
            layer_module = self.layer[i]
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states, )

            layer_head_mask = head_mask[i] if head_mask is not None else None
            past_key_value = past_key_values[i] if past_key_values is not None else None
            # if past_key_value is not None:
            #     print(past_key_value[0].shape, past_key_value[1].shape)

            if getattr(self.config, "gradient_checkpointing", False) and self.training:

                if use_cache:
                    logger.warn("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...")
                    use_cache = False

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, past_key_value, output_attentions, query_length)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    past_key_value,
                    output_attentions,
                    query_length,
                )
                # if past_key_value is not None:
                #     print(hidden_states.shape, attention_mask.shape)
                #     print(len(past_key_value))

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache += (layer_outputs[-1], )
                #print(layer_outputs[-1][0].shape)
            if output_attentions:
                all_self_attentions = all_self_attentions + (layer_outputs[1], )
                all_cross_attentions = all_cross_attentions + (layer_outputs[2], )

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states, )

        if not return_dict:
            return tuple(v for v in [
                hidden_states,
                next_decoder_cache,
                all_hidden_states,
                all_self_attentions,
                all_cross_attentions,
            ] if v is not None)
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=next_decoder_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        if isinstance(config.hidden_act, str):
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class BertOnlyMLMHead(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertLMPredictionHead(config)

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = BertConfig
    base_model_prefix = "bert"
    _keys_to_ignore_on_load_missing = [r"position_ids"]

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


class BertModel(BertPreTrainedModel):
    """
    The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
    cross-attention is added between the self-attention layers, following the architecture described in `Attention is
    all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
    Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
    argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
    input to the forward pass.
    """
    def __init__(self, config, add_pooling_layer=False):
        super().__init__(config)
        self.config = config

        self.embeddings = BertEmbeddings(config)

        self.encoder = BertEncoder(config)

        self.pooler = BertPooler(config) if add_pooling_layer else None

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
        class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    def get_extended_attention_mask(
        self,
        attention_mask: Tensor,
        input_shape: Tuple[int],
        device: device,
        is_decoder: bool,
        is_casual: bool,
        has_query: bool = False,
    ) -> Tensor:
        """
        Makes broadcastable attention and causal masks so that future and masked tokens are ignored.

        Arguments:
            attention_mask (:obj:`torch.Tensor`):
                Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
            input_shape (:obj:`Tuple[int]`):
                The shape of the input to the model.
            device: (:obj:`torch.device`):
                The device of the input to the model.

        Returns:
            :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
        """
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        #print(attention_mask.dim())
        if attention_mask.dim() == 3:
            extended_attention_mask = attention_mask[:, None, :, :]
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
            if is_decoder or is_casual:
                batch_size, seq_length = input_shape
                #print(input_shape)
                if not is_decoder and seq_length > 32:
                    query_length = 32
                    text_length = seq_length - query_length
                    query_ids = torch.arange(query_length, device=device)
                    query_causal_mask = (query_ids[None, None, :].repeat(batch_size, query_length, 1) <= query_ids[None, :,
                                                                                                                   None])
                    causal_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
                    causal_mask[:, :query_length, :query_length] = query_causal_mask
                    # print(query_causal_mask.shape, causal_mask.shape)
                    #print(causal_mask[0])

                else:
                    seq_ids = torch.arange(seq_length, device=device)
                    causal_mask = (seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None])

                # add a prefix ones mask to the causal mask
                # causal and attention masks must have same type with pytorch version < 1.3
                causal_mask = causal_mask.to(attention_mask.dtype)
                # if is_decoder:
                #     print(causal_mask.shape, attention_mask.shape)
                #print(causal_mask.shape, attention_mask.shape)

                if causal_mask.shape[1] < attention_mask.shape[1]:
                    prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
                    if has_query:  # UniLM style attention mask
                        causal_mask = torch.cat(
                            [
                                torch.zeros(
                                    (batch_size, prefix_seq_len, seq_length),
                                    device=device,
                                    dtype=causal_mask.dtype,
                                ),
                                causal_mask,
                            ],
                            axis=1,
                        )
                    causal_mask = torch.cat(
                        [
                            torch.ones(
                                (batch_size, causal_mask.shape[1], prefix_seq_len),
                                device=device,
                                dtype=causal_mask.dtype,
                            ),
                            causal_mask,
                        ],
                        axis=-1,
                    )
                    #print(has_query, causal_mask.shape)
                #print(causal_mask[0])
                extended_attention_mask = (causal_mask[:, None, :, :] * attention_mask[:, None, None, :])
                #print(extended_attention_mask[0])
                #print('extended_attention_mask', extended_attention_mask.shape)
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
                #print(attention_mask.shape, extended_attention_mask.shape)
        else:
            raise ValueError("Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
                input_shape, attention_mask.shape))

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
        return extended_attention_mask

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        head_mask=None,
        query_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        is_decoder=False,
    ):
        r"""
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
            If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
            (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
            instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
        use_cache (:obj:`bool`, `optional`):
            If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
            decoding (see :obj:`past_key_values`).
        """
        output_attentions = (output_attentions if output_attentions is not None else self.config.output_attentions)
        output_hidden_states = (output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states)
        return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)

        # use_cache = use_cache if use_cache is not None else self.config.use_cache

        if input_ids is None:
            assert (query_embeds is not None), "You have to specify query_embeds when input_ids is None"

        #if query_embeds is not None:
        if query_embeds is not None and query_embeds.shape[1] == 32:
            is_casual = True
        else:
            is_casual = False
        past_key_values_length = (past_key_values[0][0].shape[2] -
                                  self.config.query_length if past_key_values is not None else 0)

        query_length = query_embeds.shape[1] if query_embeds is not None else 0

        embedding_output = self.embeddings(
            input_ids=input_ids,
            position_ids=position_ids,
            query_embeds=query_embeds,
            past_key_values_length=past_key_values_length,
        )

        input_shape = embedding_output.size()[:-1]
        batch_size, seq_length = input_shape
        device = embedding_output.device

        #print('attention_mask', attention_mask)
        if attention_mask is None:
            attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
            #print(seq_length, past_key_values_length)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        if is_decoder:
            #print(attention_mask.shape, input_ids.shape)
            extended_attention_mask = self.get_extended_attention_mask(
                attention_mask,
                input_ids.shape,
                device,
                is_decoder,
                is_casual,
                has_query=(query_embeds is not None),
            )
        else:
            extended_attention_mask = self.get_extended_attention_mask(
                attention_mask,
                input_shape,
                device,
                is_decoder,
                is_casual,
            )
        #print(is_decoder, extended_attention_mask.shape)
        # if is_decoder:
        #     print(extended_attention_mask[0,0,:,32:])
        # if attention_mask is not None:
        #     print(input_ids, embedding_output.shape, extended_attention_mask.shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if encoder_hidden_states is not None:
            if type(encoder_hidden_states) == list:
                encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
            else:
                (
                    encoder_batch_size,
                    encoder_sequence_length,
                    _,
                ) = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)

            if type(encoder_attention_mask) == list:
                encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
            elif encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
                encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
            else:
                encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
                #print(is_casual, extended_attention_mask.shape, encoder_attention_mask.shape, encoder_extended_attention_mask.shape)
        else:
            encoder_extended_attention_mask = None

        # if input_ids is not None and query_embeds is not None:
        #     print(extended_attention_mask.shape, encoder_extended_attention_mask.shape)
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
        #print(head_mask)

        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            query_length=query_length,
        )
        # if is_decoder:
        #     print(embedding_output.shape, attention_mask.shape, len(past_key_values))
        #print(embedding_output.shape, extended_attention_mask.shape, encoder_hidden_states.shape, encoder_extended_attention_mask.shape)
        #print(extended_attention_mask[0], encoder_extended_attention_mask[0])

        #print(query_embeds.shape, encoder_hidden_states.shape)

        sequence_output = encoder_outputs[0]
        pooled_output = (self.pooler(sequence_output) if self.pooler is not None else None)

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            past_key_values=encoder_outputs.past_key_values,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
            cross_attentions=encoder_outputs.cross_attentions,
        )


class BertLMHeadModel(BertPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]

    def __init__(self, config):
        super().__init__(config)

        self.bert = BertModel(config, add_pooling_layer=False)
        self.cls = BertOnlyMLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        head_mask=None,
        query_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        past_key_values=None,
        use_cache=True,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        return_logits=False,
        is_decoder=True,
        reduction="mean",
    ):
        r"""
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
            the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
            the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
            ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
            ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
        past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
            Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
            If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
            (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
            instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
        use_cache (:obj:`bool`, `optional`):
            If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
            decoding (see :obj:`past_key_values`).
        Returns:
        Example::
            >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
            >>> import torch
            >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
            >>> config = BertConfig.from_pretrained("bert-base-cased")
            >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
            >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
            >>> outputs = model(**inputs)
            >>> prediction_logits = outputs.logits
        """
        return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)
        if labels is not None:
            use_cache = False
        if past_key_values is not None:
            query_embeds = None
        #print(len(past_key_values))
        #print('attention_mask', attention_mask)
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            query_embeds=query_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            is_decoder=is_decoder,
        )

        sequence_output = outputs[0]
        if query_embeds is not None:
            sequence_output = outputs[0][:, query_embeds.shape[1]:, :]

        prediction_scores = self.cls(sequence_output)

        if return_logits:
            return prediction_scores[:, :-1, :].contiguous()

        lm_loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
            lm_loss = loss_fct(
                shifted_prediction_scores.view(-1, self.config.vocab_size),
                labels.view(-1),
            )
            if reduction == "none":
                lm_loss = lm_loss.view(prediction_scores.size(0), -1).sum(1)

        if not return_dict:
            output = (prediction_scores, ) + outputs[2:]
            return ((lm_loss, ) + output) if lm_loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=lm_loss,
            logits=prediction_scores,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs):
        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_ids.shape)
        query_mask = input_ids.new_ones(query_embeds.shape[:-1])
        attention_mask = torch.cat([query_mask, attention_mask], dim=-1)

        # cut decoder_input_ids if past is used
        if past is not None:
            input_ids = input_ids[:, -1:]

        return {
            "input_ids": input_ids,
            "query_embeds": query_embeds,
            "attention_mask": attention_mask,
            "past_key_values": past,
            "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
            "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
            "is_decoder": True,
        }

    def _reorder_cache(self, past, beam_idx):
        reordered_past = ()
        for layer_past in past:
            reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past), )
        return reordered_past


class BertForMaskedLM(BertPreTrainedModel):

    _keys_to_ignore_on_load_unexpected = [r"pooler"]
    _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]

    def __init__(self, config):
        super().__init__(config)

        self.bert = BertModel(config, add_pooling_layer=False)
        self.cls = BertOnlyMLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    def set_output_embeddings(self, new_embeddings):
        self.cls.predictions.decoder = new_embeddings

    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        position_ids=None,
        head_mask=None,
        query_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        return_logits=False,
        is_decoder=False,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the masked language modeling loss. Indices should be in ``[-100, 0, ...,
            config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are ignored
            (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``
        """

        return_dict = (return_dict if return_dict is not None else self.config.use_return_dict)

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            query_embeds=query_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            is_decoder=is_decoder,
        )

        if query_embeds is not None:
            sequence_output = outputs[0][:, query_embeds.shape[1]:, :]
        prediction_scores = self.cls(sequence_output)

        if return_logits:
            return prediction_scores

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores, ) + outputs[2:]
            return (((masked_lm_loss, ) + output) if masked_lm_loss is not None else output)

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

class Mlp(nn.Module):
    """MLP as used in Vision Transformer, MLP-Mixer and related networks"""
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
        self.scale = qk_scale or head_dim**-0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.attn_gradients = None
        self.attention_map = None

    def save_attn_gradients(self, attn_gradients):
        self.attn_gradients = attn_gradients

    def get_attn_gradients(self):
        return self.attn_gradients

    def save_attention_map(self, attention_map):
        self.attention_map = attention_map

    def get_attention_map(self):
        return self.attention_map

    def forward(self, x, register_hook=False):
        B, N, C = x.shape
        qkv = (self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4))
        q, k, v = (
            qkv[0],
            qkv[1],
            qkv[2],
        )  # make torchscript happy (cannot use tensor as tuple)

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        if register_hook:
            self.save_attention_map(attn)
            attn.register_hook(self.save_attn_gradients)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        use_grad_checkpointing=False,
    ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
            attn_drop=attn_drop,
            proj_drop=drop,
        )
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
            drop=drop,
        )

        # if use_grad_checkpointing:
        #     self.attn = checkpoint_wrapper(self.attn)
        #     self.mlp = checkpoint_wrapper(self.mlp)

    def forward(self, x, register_hook=False):
        x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class VisionTransformer(nn.Module):
    """Vision Transformer
    A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -
        https://arxiv.org/abs/2010.11929
    """
    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        num_classes=1000,
        embed_dim=768,
        depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias=True,
        qk_scale=None,
        representation_size=None,
        drop_rate=0.0,
        attn_drop_rate=0.0,
        drop_path_rate=0.0,
        norm_layer=None,
        use_grad_checkpointing=False,
        ckpt_layer=0,
    ):
        """
        Args:
            img_size (int, tuple): input image size
            patch_size (int, tuple): patch size
            in_chans (int): number of input channels
            num_classes (int): number of classes for classification head
            embed_dim (int): embedding dimension
            depth (int): depth of transformer
            num_heads (int): number of attention heads
            mlp_ratio (int): ratio of mlp hidden dim to embedding dim
            qkv_bias (bool): enable bias for qkv if True
            qk_scale (float): override default qk scale of head_dim ** -0.5 if set
            representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
            drop_rate (float): dropout rate
            attn_drop_rate (float): attention dropout rate
            drop_path_rate (float): stochastic depth rate
            norm_layer: (nn.Module): normalization layer
        """
        super().__init__()
        self.num_features = (self.embed_dim) = embed_dim  # num_features for consistency with other models
        norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)

        self.patch_embed = PatchEmbed(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            embed_dim=embed_dim,
        )

        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        self.pos_drop = nn.Dropout(p=drop_rate)

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_path=dpr[i],
                norm_layer=norm_layer,
                use_grad_checkpointing=(use_grad_checkpointing and i >= depth - ckpt_layer),
            ) for i in range(depth)
        ])
        self.norm = norm_layer(embed_dim)

        trunc_normal_(self.pos_embed, std=0.02)
        trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed", "cls_token"}

    def forward(self, x, register_blk=-1):
        B = x.shape[0]
        x = self.patch_embed(x)

        cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)

        x = x + self.pos_embed[:, :x.size(1), :]
        x = self.pos_drop(x)

        for i, blk in enumerate(self.blocks):
            x = blk(x, register_blk == i)
        x = self.norm(x)

        return x


@torch.no_grad()
def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ""):
    """Load weights from .npz checkpoints for official Google Brain Flax implementation"""
    import numpy as np

    def _n2p(w, t=True):
        if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
            w = w.flatten()
        if t:
            if w.ndim == 4:
                w = w.transpose([3, 2, 0, 1])
            elif w.ndim == 3:
                w = w.transpose([2, 0, 1])
            elif w.ndim == 2:
                w = w.transpose([1, 0])
        return torch.from_numpy(w)

    w = np.load(checkpoint_path)
    if not prefix and "opt/target/embedding/kernel" in w:
        prefix = "opt/target/"

    if hasattr(model.patch_embed, "backbone"):
        # hybrid
        backbone = model.patch_embed.backbone
        stem_only = not hasattr(backbone, "stem")
        stem = backbone if stem_only else backbone.stem
        stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f"{prefix}conv_root/kernel"])))
        stem.norm.weight.copy_(_n2p(w[f"{prefix}gn_root/scale"]))
        stem.norm.bias.copy_(_n2p(w[f"{prefix}gn_root/bias"]))
        if not stem_only:
            for i, stage in enumerate(backbone.stages):
                for j, block in enumerate(stage.blocks):
                    bp = f"{prefix}block{i + 1}/unit{j + 1}/"
                    for r in range(3):
                        getattr(block, f"conv{r + 1}").weight.copy_(_n2p(w[f"{bp}conv{r + 1}/kernel"]))
                        getattr(block, f"norm{r + 1}").weight.copy_(_n2p(w[f"{bp}gn{r + 1}/scale"]))
                        getattr(block, f"norm{r + 1}").bias.copy_(_n2p(w[f"{bp}gn{r + 1}/bias"]))
                    if block.downsample is not None:
                        block.downsample.conv.weight.copy_(_n2p(w[f"{bp}conv_proj/kernel"]))
                        block.downsample.norm.weight.copy_(_n2p(w[f"{bp}gn_proj/scale"]))
                        block.downsample.norm.bias.copy_(_n2p(w[f"{bp}gn_proj/bias"]))
        embed_conv_w = _n2p(w[f"{prefix}embedding/kernel"])
    else:
        embed_conv_w = adapt_input_conv(model.patch_embed.proj.weight.shape[1], _n2p(w[f"{prefix}embedding/kernel"]))
    model.patch_embed.proj.weight.copy_(embed_conv_w)
    model.patch_embed.proj.bias.copy_(_n2p(w[f"{prefix}embedding/bias"]))
    model.cls_token.copy_(_n2p(w[f"{prefix}cls"], t=False))
    pos_embed_w = _n2p(w[f"{prefix}Transformer/posembed_input/pos_embedding"], t=False)
    if pos_embed_w.shape != model.pos_embed.shape:
        pos_embed_w = resize_pos_embed(  # resize pos embedding when different size from pretrained weights
            pos_embed_w,
            model.pos_embed,
            getattr(model, "num_tokens", 1),
            model.patch_embed.grid_size,
        )
    model.pos_embed.copy_(pos_embed_w)
    model.norm.weight.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/scale"]))
    model.norm.bias.copy_(_n2p(w[f"{prefix}Transformer/encoder_norm/bias"]))
    #     if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
    #         model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
    #         model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
    #     if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
    #         model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
    #         model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
    for i, block in enumerate(model.blocks.children()):
        block_prefix = f"{prefix}Transformer/encoderblock_{i}/"
        mha_prefix = block_prefix + "MultiHeadDotProductAttention_1/"
        block.norm1.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/scale"]))
        block.norm1.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_0/bias"]))
        block.attn.qkv.weight.copy_(
            torch.cat([_n2p(w[f"{mha_prefix}{n}/kernel"], t=False).flatten(1).T for n in ("query", "key", "value")]))
        block.attn.qkv.bias.copy_(
            torch.cat([_n2p(w[f"{mha_prefix}{n}/bias"], t=False).reshape(-1) for n in ("query", "key", "value")]))
        block.attn.proj.weight.copy_(_n2p(w[f"{mha_prefix}out/kernel"]).flatten(1))
        block.attn.proj.bias.copy_(_n2p(w[f"{mha_prefix}out/bias"]))
        for r in range(2):
            getattr(block.mlp, f"fc{r + 1}").weight.copy_(_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/kernel"]))
            getattr(block.mlp, f"fc{r + 1}").bias.copy_(_n2p(w[f"{block_prefix}MlpBlock_3/Dense_{r}/bias"]))
        block.norm2.weight.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/scale"]))
        block.norm2.bias.copy_(_n2p(w[f"{block_prefix}LayerNorm_2/bias"]))


def resize_pos_embed(posemb, posemb_new, num_tokens=1, gs_new=()):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    print("Resized position embedding: %s to %s", posemb.shape, posemb_new.shape)
    ntok_new = posemb_new.shape[1]
    if num_tokens:
        posemb_tok, posemb_grid = posemb[:, :num_tokens], posemb[0, num_tokens:]
        ntok_new -= num_tokens
    else:
        posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
    gs_old = int(math.sqrt(len(posemb_grid)))
    if not len(gs_new):  # backwards compatibility
        gs_new = [int(math.sqrt(ntok_new))] * 2
    assert len(gs_new) >= 2
    print("Position embedding grid-size from %s to %s", [gs_old, gs_old], gs_new)
    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(posemb_grid, size=gs_new, mode="bicubic", align_corners=False)
    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new[0] * gs_new[1], -1)
    posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
    return


def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
    # interpolate position embedding
    embedding_size = pos_embed_checkpoint.shape[-1]
    num_patches = visual_encoder.patch_embed.num_patches
    num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
    # height (== width) for the checkpoint position embedding
    orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
    # height (== width) for the new position embedding
    new_size = int(num_patches**0.5)

    if orig_size != new_size:
        # class_token and dist_token are kept unchanged
        extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
        # only the position tokens are interpolated
        pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
        pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
        pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=(new_size, new_size), mode="bicubic", align_corners=False)
        pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
        new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
        print("reshape position embedding from %d to %d" % (orig_size**2, new_size**2))

        return new_pos_embed
    else:
        return pos_embed_checkpoint

# class Blip2Base(BaseModel):
class Blip2Base(PreTrainedModel):
    config_class = BertConfig
    
    def __init__(self, config):
        super().__init__(config)

    @property
    def device(self):
        return list(self.parameters())[0].device

    @classmethod
    def init_tokenizer(cls, truncation_side="right"):
        tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side=truncation_side)
        tokenizer.add_special_tokens({"bos_token": "[DEC]"})
        return tokenizer

    @classmethod
    def init_Qformer(cls, encoder_config, num_query_token, vision_width, cross_attention_freq=2, cache_dir=""):
        #print ("loading")
        encoder_config = BertConfig.from_pretrained("bert-base-uncased")
        encoder_config.encoder_width = vision_width
        # insert cross-attention layer every other block
        encoder_config.add_cross_attention = True
        encoder_config.cross_attention_freq = cross_attention_freq
        encoder_config.query_length = num_query_token
        Qformer = BertLMHeadModel(encoder_config) # .from_pretrained("bert-base-uncased", config=encoder_config, cache_dir=cache_dir)
        query_tokens = nn.Parameter(torch.zeros(1, num_query_token, encoder_config.hidden_size))
        query_tokens.data.normal_(mean=0.0, std=encoder_config.initializer_range)
        return Qformer, query_tokens



class VectorQuantizer2(nn.Module):
    """
    Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
    avoids costly matrix multiplications and allows for post-hoc remapping of indices.
    """

    # NOTE: due to a bug the beta term was applied to the wrong term. for
    # backwards compatibility we use the buggy version by default, but you can
    # specify legacy=False to fix it.
    def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
        super().__init__()
        self.n_e = n_e
        self.e_dim = e_dim
        self.beta = beta
        self.legacy = legacy

        self.embedding = nn.Embedding(self.n_e, self.e_dim)
        self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)

        self.remap = remap
        if self.remap is not None:
            self.register_buffer("used", torch.tensor(np.load(self.remap)))
            self.re_embed = self.used.shape[0]
            self.unknown_index = unknown_index  # "random" or "extra" or integer
            if self.unknown_index == "extra":
                self.unknown_index = self.re_embed
                self.re_embed = self.re_embed + 1
            print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
                  f"Using {self.unknown_index} for unknown indices.")
        else:
            self.re_embed = n_e

        self.sane_index_shape = sane_index_shape

    def remap_to_used(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        match = (inds[:, :, None] == used[None, None, ...]).long()
        new = match.argmax(-1)
        unknown = match.sum(2) < 1
        if self.unknown_index == "random":
            new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
        else:
            new[unknown] = self.unknown_index
        return new.reshape(ishape)

    def unmap_to_all(self, inds):
        ishape = inds.shape
        assert len(ishape) > 1
        inds = inds.reshape(ishape[0], -1)
        used = self.used.to(inds)
        if self.re_embed > self.used.shape[0]:  # extra token
            inds[inds >= self.used.shape[0]] = 0  # simply set to zero
        back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
        return back.reshape(ishape)

    # def l2norm(self, t):
    #     return F.normalize(t, p = 2, dim = -1)

    def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
        assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
        assert rescale_logits is False, "Only for interface compatible with Gumbel"
        assert return_logits is False, "Only for interface compatible with Gumbel"
        # reshape z -> (batch, height, width, channel) and flatten
        #z = rearrange(z, 'b c h w -> b h w c').contiguous()
        bz = z.shape[0]
        z_flattened = z.view(-1, self.e_dim)
        #print('z_flattened', z_flattened.shape)
        # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z

        d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
            torch.sum(self.embedding.weight**2, dim=1) - 2 * \
            torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))

        min_encoding_indices = torch.argmin(d, dim=1)
        z_q = self.embedding(min_encoding_indices).view(z.shape)
        perplexity = None
        min_encodings = None

        # compute loss for embedding
        if not self.legacy:
            loss = self.beta * torch.mean((z_q.detach() - z)**2) + torch.mean((z_q - z.detach())**2)
        else:
            loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)

        # preserve gradients
        z_q = z + (z_q - z).detach()

        # reshape back to match original input shape
        #z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
        z_q = z_q.reshape(bz, -1, z_q.shape[-1])
        if self.remap is not None:
            min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1)  # add batch axis
            min_encoding_indices = self.remap_to_used(min_encoding_indices)
            min_encoding_indices = min_encoding_indices.reshape(-1, 1)  # flatten

        if self.sane_index_shape:
            min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])

        return z_q, loss, min_encoding_indices

    def get_codebook_entry(self, indices, shape=None):
        # shape specifying (batch, height, width, channel)
        if self.remap is not None:
            indices = indices.reshape(shape[0], -1)  # add batch axis
            indices = self.unmap_to_all(indices)
            indices = indices.reshape(-1)  # flatten again

        # get quantized latent vectors
        z_q = self.embedding(indices)

        if shape is not None:
            z_q = z_q.view(shape)
            # reshape back to match original input shape
            z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q


class Blip2QformerQuantizer(Blip2Base):
    """
    BLIP2 first-stage model with Q-former and ViT.
    Supported model types:
        - pretrained: pretrained model with vit-g
        - pretrain_vitL: pretrained model with vit-large
        - coco: fintuned model on coco
    Usage:
        >>> from lavis.models import load_model
        >>> model = load_model("blip2", "pretrain")
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "pretrain": "configs/models/blip2/blip2_pretrain.yaml",
        "pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
        "coco": "configs/models/blip2/blip2_coco.yaml",
    }

    def __init__(self,
                 config,
                 img_size=224,
                 drop_path_rate=0,
                 use_grad_checkpoint=False,
                 freeze_vit=True,
                 num_query_token=32,
                 cross_attention_freq=2,
                 embed_dim=256,
                 max_txt_len=32,
                 codebook_embed_dim=32,
                 n_embed=8192,
                 recon_s=True,
                 blocks_for_image=True,
                 decode_depth=4,
                 use_recon_s_for_image=False,
                 image_features_dim=1024,
                 visual_encoder_num_features=1408,
                 cache_dir="./"):
        super().__init__(config)

        self.tokenizer = self.init_tokenizer()

        self.codebook_embed_dim = codebook_embed_dim
        self.n_embed = n_embed
        self.recon_s = recon_s
        self.blocks_for_image = blocks_for_image
        self.use_recon_s_for_image = use_recon_s_for_image
        self.depth = decode_depth
        self.image_features_dim = image_features_dim

        self.Qformer, self.query_tokens = self.init_Qformer(config, num_query_token, visual_encoder_num_features, cache_dir=cache_dir)

        self.Qformer.cls = None
        self.Qformer.bert.embeddings.word_embeddings = None
        self.Qformer.bert.embeddings.position_embeddings = None
        for layer in self.Qformer.bert.encoder.layer:
            layer.output = None
            layer.intermediate = None

        for name, param in self.Qformer.named_parameters():
            param.requires_grad = False
        self.query_tokens.requires_grad = False

        self.quantize = VectorQuantizer2(n_embed, codebook_embed_dim, beta=0.25, remap=None, sane_index_shape=False)

        self.encode_task_layer = nn.Sequential(
            nn.Linear(self.Qformer.config.hidden_size, self.Qformer.config.hidden_size),
            nn.Tanh(),
            nn.Linear(self.Qformer.config.hidden_size, codebook_embed_dim)  # for quantize
        )

        self.decode_task_layer = nn.Sequential(
            nn.Linear(codebook_embed_dim, codebook_embed_dim),
            nn.Tanh(),
            nn.Linear(codebook_embed_dim, self.Qformer.config.hidden_size)  # for quantize
        )

        self.quantize = self.quantize.eval()
        self.quantize.training = False
        for name, param in self.named_parameters():
            if 'quantize' in name or 'encode_task_layer' in name or 'decode_task_layer' in name:
                #print('freeze params', name)
                param.requires_grad = False

        if self.recon_s:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
            self.blocks = nn.ModuleList([
                Block(dim=self.Qformer.config.hidden_size,
                      num_heads=12,
                      mlp_ratio=4.0,
                      qkv_bias=True,
                      qk_scale=None,
                      drop=0.0,
                      attn_drop=0.0,
                      drop_path=0.0,
                      norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
            ])

        if self.blocks_for_image:
            self.pos_embed_image = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
            self.blocks_image = nn.ModuleList([
                Block(dim=self.Qformer.config.hidden_size,
                      num_heads=12,
                      mlp_ratio=4.0,
                      qkv_bias=True,
                      qk_scale=None,
                      drop=0.0,
                      attn_drop=0.0,
                      drop_path=0.0,
                      norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
            ])

        self.image_down = nn.Sequential(
            nn.Linear(self.Qformer.config.hidden_size, 256, bias=False),
            nn.ReLU(),
            nn.Linear(256, 128, bias=False),
            nn.ReLU(),
            nn.Linear(128, 32, bias=False),
        )
        self.distill_image_proj = nn.Linear(num_query_token * 32, image_features_dim)

    def get_codebook_indices_only(self, visual_encoder, image):
        with torch.no_grad():
            image_embeds = visual_encoder.ln_vision(visual_encoder(image))
            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
            query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

            query_output_down = self.encode_task_layer(query_output.last_hidden_state)
            quant, loss_embed, embed_ind = self.quantize(query_output_down)
            embed_ind = embed_ind.reshape(quant.shape[0], -1)

        return embed_ind

    def get_codebook_indices(self, visual_encoder, image):
        with torch.no_grad():
            image_embeds = visual_encoder.ln_vision(visual_encoder(image))
            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
            query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
            query_output = self.Qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )

            query_output_down = self.encode_task_layer(query_output.last_hidden_state)
            quant, loss_embed, embed_ind = self.quantize(query_output_down)
            embed_ind = embed_ind.reshape(quant.shape[0], -1)

            query_output_up = self.decode_task_layer(quant)

        return embed_ind, query_output_up
    
    def get_codebook_entry(self, indices):
        with torch.no_grad():
            quant_embedding = self.quantize.get_codebook_entry(indices)
            # print('quant_embedding_shape: ', quant_embedding.shape)
            # print(self.decode_task_layer)
            # exit()
            query_output_up = self.decode_task_layer(quant_embedding)

            pos_embed_image = self.pos_embed_image.repeat(query_output_up.shape[0], 1, 1)
            query_output_up_pos_image = query_output_up + pos_embed_image
            for blk in self.blocks_image:
                query_output_up_pos_image = blk(query_output_up_pos_image)
            query_output_up = query_output_up_pos_image

            reverse_output = self.image_down(query_output_up)
            reverse_output = reverse_output.reshape(reverse_output.shape[0], -1)
            reverse_output_proj = self.distill_image_proj(reverse_output)

            return reverse_output_proj
    
    @classmethod
    def get_vision_encoder(cls,model_name="eva_vit_g",
                           img_size=224,
                           drop_path_rate=0,
                           use_grad_checkpoint=False,
                           precision="fp32",
                           cache_dir="./"):
        visual_encoder = create_eva_vit_g(img_size, drop_path_rate, use_grad_checkpoint, precision, cache_dir=cache_dir)
        visual_encoder.ln_vision = nn.LayerNorm(visual_encoder.num_features)
        for name, param in visual_encoder.named_parameters():
            param.requires_grad = False
        visual_encoder = visual_encoder.eval()
        visual_encoder.ln_vision.weight.requires_grad = False
        visual_encoder.ln_vision.bias.requires_grad = False
        return visual_encoder

class Seed2Tokenizer(PreTrainedModel):
    config_class = BertConfig
    base_model_prefix = "model"    
    def __init__(self,
                 config,
                 image_size=224,
                 drop_path_rate=0.4):
        super().__init__(config)

        model = Blip2QformerQuantizer(config) # .from_pretrained(pretrained_model_path=model_path,
                                              #        cache_dir=cache_dir,
                                              #        **kwargs).eval()
        #model = model.to(device)

        processor = transforms.Compose([
            transforms.Resize((image_size, image_size), interpolation=3),
            # transforms.Resize(image_size, interpolation=3),
            # transforms.CenterCrop(image_size),
            transforms.ToTensor(),
            transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
        ])

        shape_latents = torch.Size([1, 4, 96, 96])
        self.register_buffer("latents",torch.randn(shape_latents, generator=None, layout=torch.strided))
        

        
        self.model = model
        self.processor = processor
        self.visual_encoder = VisionTransformerEvaVit(
            img_size=image_size,
            patch_size=14,
            use_mean_pooling=False,
            embed_dim=1408,
            depth=39,
            num_heads=1408 // 88,
            mlp_ratio=4.3637,
            qkv_bias=True,
            drop_path_rate=drop_path_rate,
            norm_layer=partial(nn.LayerNorm, eps=1e-6),
            use_checkpoint=False,
        )
        

    def __len__(self):
        return self.model.n_embed

    def encode(self, image_torch, visual_encoder=None):
        '''Convert a batch of img to code
        Args:
            model: The tokenizer model.
            img: [b, c, h, w]
        '''
        if visual_encoder is None:
            visual_encoder = self.visual_encoder
        if len(image_torch.shape) == 3:
            image_torch = image_torch.unsqueeze(0)

        image_torch = image_torch.to(dtype=self.latents.dtype)
        image_torch = image_torch.to(self.device)
        # img = image_torch.to(self.device)
        img = image_torch
        #if self.fp16:
        #    img = img.half()
        #print (img.dtype)
        with torch.no_grad():
            id = self.model.get_codebook_indices_only(visual_encoder, img)
        return id.view(img.shape[0], -1)

    def decode(self, diffusion_model, indices, guidance_scale=10, noise_level=0, num_inference_steps=20,):
        image_embeds = self.model.get_codebook_entry(indices)
        image_embeds = image_embeds.to(dtype=diffusion_model.dtype, device=diffusion_model.device)
        image = diffusion_model(
            image_embeds=image_embeds,
            guidance_scale=guidance_scale,
            noise_level=noise_level,
            num_inference_steps=num_inference_steps,
            latents=self.latents.to(dtype=diffusion_model.dtype, device=diffusion_model.device),
        ).images
        return image

    @property
    def num_image_tokens(self):
        return 8192  # self.image_tokenizer.num_tokens # allow not load

    def encode_image(
        self,
        image_path=None,
        image_pil=None,
        image_torch=None,
        image_size: int = 224,
        visual_encoder = None,
        
    ):
        assert (image_path is None) + (image_pil is None) + (image_torch is None) == 2
        if visual_encoder is None:
            visual_encoder = self.visual_encoder
        # need_norm_to_1 = False
        if image_path is not None:
            image_pil = Image.open(image_path).convert('RGB')

        if image_pil is not None:
            image_torch = self.processor(image_pil)

            image_torch = image_torch.to(self.device)
        image_torch = image_torch.to(dtype=self.latents.dtype)
        return self.encode(image_torch, visual_encoder)