Bounding box detection
PyTorch
File size: 74,384 Bytes
cae5ca5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
"""
 coding=utf-8
 Copyright 2022, Ontocord, LLC
 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal
 Adapted From Facebook Inc, Detectron2 && Huggingface Co.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.import copy
 """
import itertools
import math
import os
from abc import ABCMeta, abstractmethod
from collections import OrderedDict, namedtuple
from typing import Dict, List, Tuple

import numpy as np
import torch
from torch import nn
from torch.nn.modules.batchnorm import BatchNorm2d
from torchvision.ops import RoIPool
from torchvision.ops.boxes import batched_nms, nms

from .utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint


# other:
def norm_box(boxes, raw_sizes):
    if not isinstance(boxes, torch.Tensor):
        normalized_boxes = boxes.copy()
    else:
        normalized_boxes = boxes.clone()
    normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1].view(-1, 1, 1)
    normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0].view(-1, 1, 1)
    return normalized_boxes


def pad_list_tensors(
    list_tensors,
    preds_per_image,
    max_detections=None,
    return_tensors=None,
    padding=None,
    pad_value=0,
    location=None,
):
    """
    location will always be cpu for np tensors
    """
    if location is None:
        location = "cpu"
    assert return_tensors in {"pt", "np", None}
    assert padding in {"max_detections", "max_batch", None}
    new = []
    if padding is None:
        if return_tensors is None:
            return list_tensors
        elif return_tensors == "pt":
            if not isinstance(list_tensors, torch.Tensor):
                return torch.stack(list_tensors).to(location)
            else:
                return list_tensors.to(location)
        else:
            if not isinstance(list_tensors, list):
                return np.array(list_tensors.to(location))
            else:
                return list_tensors.to(location)
    if padding == "max_detections":
        assert max_detections is not None, "specify max number of detections per batch"
    elif padding == "max_batch":
        max_detections = max(preds_per_image)
    for i in range(len(list_tensors)):
        too_small = False
        tensor_i = list_tensors.pop(0)
        if tensor_i.ndim < 2:
            too_small = True
            tensor_i = tensor_i.unsqueeze(-1)
        assert isinstance(tensor_i, torch.Tensor)
        tensor_i = nn.functional.pad(
            input=tensor_i,
            pad=(0, 0, 0, max_detections - preds_per_image[i]),
            mode="constant",
            value=pad_value,
        )
        if too_small:
            tensor_i = tensor_i.squeeze(-1)
        if return_tensors is None:
            if location == "cpu":
                tensor_i = tensor_i.cpu()
            tensor_i = tensor_i.tolist()
        if return_tensors == "np":
            if location == "cpu":
                tensor_i = tensor_i.cpu()
            tensor_i = tensor_i.numpy()
        else:
            if location == "cpu":
                tensor_i = tensor_i.cpu()
        new.append(tensor_i)
    if return_tensors == "np":
        return np.stack(new, axis=0)
    elif return_tensors == "pt" and not isinstance(new, torch.Tensor):
        return torch.stack(new, dim=0)
    else:
        return list_tensors


def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd):
    scores = scores[:, :-1]
    num_bbox_reg_classes = boxes.shape[1] // 4
    # Convert to Boxes to use the `clip` function ...
    boxes = boxes.reshape(-1, 4)
    _clip_box(boxes, image_shape)
    boxes = boxes.view(-1, num_bbox_reg_classes, 4)  # R x C x 4

    # Select max scores
    max_scores, max_classes = scores.max(1)  # R x C --> R
    num_objs = boxes.size(0)
    boxes = boxes.view(-1, 4)
    idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes
    max_boxes = boxes[idxs]  # Select max boxes according to the max scores.

    # Apply NMS
    keep = nms(max_boxes, max_scores, nms_thresh)
    keep = keep[:maxd]
    if keep.shape[-1] >= mind and keep.shape[-1] <= maxd:
        max_boxes, max_scores = max_boxes[keep], max_scores[keep]
        classes = max_classes[keep]
        return max_boxes, max_scores, classes, keep
    else:
        return None


# Helper Functions
def _clip_box(tensor, box_size: Tuple[int, int]):
    assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!"
    h, w = box_size
    tensor[:, 0].clamp_(min=0, max=w)
    tensor[:, 1].clamp_(min=0, max=h)
    tensor[:, 2].clamp_(min=0, max=w)
    tensor[:, 3].clamp_(min=0, max=h)


def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor:
    widths = box[:, 2] - box[:, 0]
    heights = box[:, 3] - box[:, 1]
    keep = (widths > threshold) & (heights > threshold)
    return keep


def get_norm(norm, out_channels):
    if isinstance(norm, str):
        if len(norm) == 0:
            return None
        norm = {
            "BN": BatchNorm2d,
            "GN": lambda channels: nn.GroupNorm(32, channels),
            "nnSyncBN": nn.SyncBatchNorm,  # keep for debugging
            "": lambda x: x,
        }[norm]
    return norm(out_channels)


def _create_grid_offsets(size: List[int], stride: int, offset: float, device):

    grid_height, grid_width = size
    shifts_x = torch.arange(
        offset * stride,
        grid_width * stride,
        step=stride,
        dtype=torch.float32,
        device=device,
    )
    shifts_y = torch.arange(
        offset * stride,
        grid_height * stride,
        step=stride,
        dtype=torch.float32,
        device=device,
    )

    shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
    shift_x = shift_x.reshape(-1)
    shift_y = shift_y.reshape(-1)
    return shift_x, shift_y


def build_backbone(cfg):
    input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN))
    norm = cfg.RESNETS.NORM
    stem = BasicStem(
        in_channels=input_shape.channels,
        out_channels=cfg.RESNETS.STEM_OUT_CHANNELS,
        norm=norm,
        caffe_maxpool=cfg.MODEL.MAX_POOL,
    )
    freeze_at = cfg.BACKBONE.FREEZE_AT

    if freeze_at >= 1:
        for p in stem.parameters():
            p.requires_grad = False

    out_features = cfg.RESNETS.OUT_FEATURES
    depth = cfg.RESNETS.DEPTH
    num_groups = cfg.RESNETS.NUM_GROUPS
    width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
    bottleneck_channels = num_groups * width_per_group
    in_channels = cfg.RESNETS.STEM_OUT_CHANNELS
    out_channels = cfg.RESNETS.RES2_OUT_CHANNELS
    stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
    res5_dilation = cfg.RESNETS.RES5_DILATION
    assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation)

    num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth]

    stages = []
    out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features]
    max_stage_idx = max(out_stage_idx)
    for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)):
        dilation = res5_dilation if stage_idx == 5 else 1
        first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2
        stage_kargs = {
            "num_blocks": num_blocks_per_stage[idx],
            "first_stride": first_stride,
            "in_channels": in_channels,
            "bottleneck_channels": bottleneck_channels,
            "out_channels": out_channels,
            "num_groups": num_groups,
            "norm": norm,
            "stride_in_1x1": stride_in_1x1,
            "dilation": dilation,
        }

        stage_kargs["block_class"] = BottleneckBlock
        blocks = ResNet.make_stage(**stage_kargs)
        in_channels = out_channels
        out_channels *= 2
        bottleneck_channels *= 2

        if freeze_at >= stage_idx:
            for block in blocks:
                block.freeze()
        stages.append(blocks)

    return ResNet(stem, stages, out_features=out_features)


def find_top_rpn_proposals(
    proposals,
    pred_objectness_logits,
    images,
    image_sizes,
    nms_thresh,
    pre_nms_topk,
    post_nms_topk,
    min_box_side_len,
    training,
):
    """Args:
        proposals (list[Tensor]): (L, N, Hi*Wi*A, 4).
        pred_objectness_logits: tensors of length L.
        nms_thresh (float): IoU threshold to use for NMS
        pre_nms_topk (int): before nms
        post_nms_topk (int): after nms
        min_box_side_len (float): minimum proposal box side
        training (bool): True if proposals are to be used in training,
    Returns:
        results (List[Dict]): stores post_nms_topk object proposals for image i.
    """
    num_images = len(images)
    device = proposals[0].device

    # 1. Select top-k anchor for every level and every image
    topk_scores = []  # #lvl Tensor, each of shape N x topk
    topk_proposals = []
    level_ids = []  # #lvl Tensor, each of shape (topk,)
    batch_idx = torch.arange(num_images, device=device)
    for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits):
        Hi_Wi_A = logits_i.shape[1]
        num_proposals_i = min(pre_nms_topk, Hi_Wi_A)

        # sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812)
        # topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1)
        logits_i, idx = logits_i.sort(descending=True, dim=1)
        topk_scores_i = logits_i[batch_idx, :num_proposals_i]
        topk_idx = idx[batch_idx, :num_proposals_i]

        # each is N x topk
        topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx]  # N x topk x 4

        topk_proposals.append(topk_proposals_i)
        topk_scores.append(topk_scores_i)
        level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device))

    # 2. Concat all levels together
    topk_scores = torch.cat(topk_scores, dim=1)
    topk_proposals = torch.cat(topk_proposals, dim=1)
    level_ids = torch.cat(level_ids, dim=0)

    # if I change to batched_nms, I wonder if this will make a difference
    # 3. For each image, run a per-level NMS, and choose topk results.
    results = []
    for n, image_size in enumerate(image_sizes):
        boxes = topk_proposals[n]
        scores_per_img = topk_scores[n]
        # I will have to take a look at the boxes clip method
        _clip_box(boxes, image_size)
        # filter empty boxes
        keep = _nonempty_boxes(boxes, threshold=min_box_side_len)
        lvl = level_ids
        if keep.sum().item() != len(boxes):
            boxes, scores_per_img, lvl = (
                boxes[keep],
                scores_per_img[keep],
                level_ids[keep],
            )

        keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh)
        keep = keep[:post_nms_topk]

        res = (boxes[keep], scores_per_img[keep])
        results.append(res)

    # I wonder if it would be possible for me to pad all these things.
    return results


def subsample_labels(labels, num_samples, positive_fraction, bg_label):
    """
    Returns:
        pos_idx, neg_idx (Tensor):
            1D vector of indices. The total length of both is `num_samples` or fewer.
    """
    positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1)
    negative = torch.nonzero(labels == bg_label).squeeze(1)

    num_pos = int(num_samples * positive_fraction)
    # protect against not enough positive examples
    num_pos = min(positive.numel(), num_pos)
    num_neg = num_samples - num_pos
    # protect against not enough negative examples
    num_neg = min(negative.numel(), num_neg)

    # randomly select positive and negative examples
    perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos]
    perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg]

    pos_idx = positive[perm1]
    neg_idx = negative[perm2]
    return pos_idx, neg_idx


def add_ground_truth_to_proposals(gt_boxes, proposals):
    raise NotImplementedError()


def add_ground_truth_to_proposals_single_image(gt_boxes, proposals):
    raise NotImplementedError()


def _fmt_box_list(box_tensor, batch_index: int):
    repeated_index = torch.full(
        (len(box_tensor), 1),
        batch_index,
        dtype=box_tensor.dtype,
        device=box_tensor.device,
    )
    return torch.cat((repeated_index, box_tensor), dim=1)


def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]):
    pooler_fmt_boxes = torch.cat(
        [_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)],
        dim=0,
    )
    return pooler_fmt_boxes


def assign_boxes_to_levels(
    box_lists: List[torch.Tensor],
    min_level: int,
    max_level: int,
    canonical_box_size: int,
    canonical_level: int,
):

    box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists]))
    # Eqn.(1) in FPN paper
    level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8))
    # clamp level to (min, max), in case the box size is too large or too small
    # for the available feature maps
    level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level)
    return level_assignments.to(torch.int64) - min_level


# Helper Classes
class _NewEmptyTensorOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, new_shape):
        ctx.shape = x.shape
        return x.new_empty(new_shape)

    @staticmethod
    def backward(ctx, grad):
        shape = ctx.shape
        return _NewEmptyTensorOp.apply(grad, shape), None


class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])):
    def __new__(cls, *, channels=None, height=None, width=None, stride=None):
        return super().__new__(cls, channels, height, width, stride)


class Box2BoxTransform(object):
    """
    This R-CNN transformation scales the box's width and height
    by exp(dw), exp(dh) and shifts a box's center by the offset
    (dx * width, dy * height).
    """

    def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None):
        """
        Args:
            weights (4-element tuple): Scaling factors that are applied to the
                (dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set
                such that the deltas have unit variance; now they are treated as
                hyperparameters of the system.
            scale_clamp (float): When predicting deltas, the predicted box scaling
                factors (dw and dh) are clamped such that they are <= scale_clamp.
        """
        self.weights = weights
        if scale_clamp is not None:
            self.scale_clamp = scale_clamp
        else:
            """
            Value for clamping large dw and dh predictions.
            The heuristic is that we clamp such that dw and dh are no larger
            than what would transform a 16px box into a 1000px box
            (based on a small anchor, 16px, and a typical image size, 1000px).
            """
            self.scale_clamp = math.log(1000.0 / 16)

    def get_deltas(self, src_boxes, target_boxes):
        """
        Get box regression transformation deltas (dx, dy, dw, dh) that can be used
        to transform the `src_boxes` into the `target_boxes`. That is, the relation
        ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless
        any delta is too large and is clamped).
        Args:
            src_boxes (Tensor): source boxes, e.g., object proposals
            target_boxes (Tensor): target of the transformation, e.g., ground-truth
                boxes.
        """
        assert isinstance(src_boxes, torch.Tensor), type(src_boxes)
        assert isinstance(target_boxes, torch.Tensor), type(target_boxes)

        src_widths = src_boxes[:, 2] - src_boxes[:, 0]
        src_heights = src_boxes[:, 3] - src_boxes[:, 1]
        src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths
        src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights

        target_widths = target_boxes[:, 2] - target_boxes[:, 0]
        target_heights = target_boxes[:, 3] - target_boxes[:, 1]
        target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths
        target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights

        wx, wy, ww, wh = self.weights
        dx = wx * (target_ctr_x - src_ctr_x) / src_widths
        dy = wy * (target_ctr_y - src_ctr_y) / src_heights
        dw = ww * torch.log(target_widths / src_widths)
        dh = wh * torch.log(target_heights / src_heights)

        deltas = torch.stack((dx, dy, dw, dh), dim=1)
        assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!"
        return deltas

    def apply_deltas(self, deltas, boxes):
        """
        Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`.
        Args:
            deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1.
                deltas[i] represents k potentially different class-specific
                box transformations for the single box boxes[i].
            boxes (Tensor): boxes to transform, of shape (N, 4)
        """
        boxes = boxes.to(deltas.dtype)

        widths = boxes[:, 2] - boxes[:, 0]
        heights = boxes[:, 3] - boxes[:, 1]
        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        wx, wy, ww, wh = self.weights
        dx = deltas[:, 0::4] / wx
        dy = deltas[:, 1::4] / wy
        dw = deltas[:, 2::4] / ww
        dh = deltas[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.scale_clamp)
        dh = torch.clamp(dh, max=self.scale_clamp)

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

        pred_boxes = torch.zeros_like(deltas)
        pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w  # x1
        pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h  # y1
        pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w  # x2
        pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h  # y2
        return pred_boxes


class Matcher(object):
    """
    This class assigns to each predicted "element" (e.g., a box) a ground-truth
    element. Each predicted element will have exactly zero or one matches; each
    ground-truth element may be matched to zero or more predicted elements.
    The matching is determined by the MxN match_quality_matrix, that characterizes
    how well each (ground-truth, prediction)-pair match each other. For example,
    if the elements are boxes, this matrix may contain box intersection-over-union
    overlap values.
    The matcher returns (a) a vector of length N containing the index of the
    ground-truth element m in [0, M) that matches to prediction n in [0, N).
    (b) a vector of length N containing the labels for each prediction.
    """

    def __init__(
        self,
        thresholds: List[float],
        labels: List[int],
        allow_low_quality_matches: bool = False,
    ):
        """
        Args:
            thresholds (list): a list of thresholds used to stratify predictions
                into levels.
            labels (list): a list of values to label predictions belonging at
                each level. A label can be one of {-1, 0, 1} signifying
                {ignore, negative class, positive class}, respectively.
            allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold.
                For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and
                thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and
                thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives.
        """
        thresholds = thresholds[:]
        assert thresholds[0] > 0
        thresholds.insert(0, -float("inf"))
        thresholds.append(float("inf"))
        assert all([low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])])
        assert all([label_i in [-1, 0, 1] for label_i in labels])
        assert len(labels) == len(thresholds) - 1
        self.thresholds = thresholds
        self.labels = labels
        self.allow_low_quality_matches = allow_low_quality_matches

    def __call__(self, match_quality_matrix):
        """
        Args:
            match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted
                elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`).
        Returns:
            matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M)
            match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored
        """
        assert match_quality_matrix.dim() == 2
        if match_quality_matrix.numel() == 0:
            default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64)
            # When no gt boxes exist, we define IOU = 0 and therefore set labels
            # to `self.labels[0]`, which usually defaults to background class 0
            # To choose to ignore instead,
            # can make labels=[-1,0,-1,1] + set appropriate thresholds
            default_match_labels = match_quality_matrix.new_full(
                (match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8
            )
            return default_matches, default_match_labels

        assert torch.all(match_quality_matrix >= 0)

        # match_quality_matrix is M (gt) x N (predicted)
        # Max over gt elements (dim 0) to find best gt candidate for each prediction
        matched_vals, matches = match_quality_matrix.max(dim=0)

        match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8)

        for (l, low, high) in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]):
            low_high = (matched_vals >= low) & (matched_vals < high)
            match_labels[low_high] = l

        if self.allow_low_quality_matches:
            self.set_low_quality_matches_(match_labels, match_quality_matrix)

        return matches, match_labels

    def set_low_quality_matches_(self, match_labels, match_quality_matrix):
        """
        Produce additional matches for predictions that have only low-quality matches.
        Specifically, for each ground-truth G find the set of predictions that have
        maximum overlap with it (including ties); for each prediction in that set, if
        it is unmatched, then match it to the ground-truth G.
        This function implements the RPN assignment case (i)
        in Sec. 3.1.2 of Faster R-CNN.
        """
        # For each gt, find the prediction with which it has highest quality
        highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1)
        # Find the highest quality match available, even if it is low, including ties.
        # Note that the matches qualities must be positive due to the use of
        # `torch.nonzero`.
        of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None]
        if of_quality_inds.dim() == 0:
            (_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1)
        else:
            (_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1)
        match_labels[pred_inds_with_highest_quality] = 1


class RPNOutputs(object):
    def __init__(
        self,
        box2box_transform,
        anchor_matcher,
        batch_size_per_image,
        positive_fraction,
        images,
        pred_objectness_logits,
        pred_anchor_deltas,
        anchors,
        boundary_threshold=0,
        gt_boxes=None,
        smooth_l1_beta=0.0,
    ):
        """
        Args:
            box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations.
            anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels.
            batch_size_per_image (int): number of proposals to sample when training
            positive_fraction (float): target fraction of sampled proposals that should be positive
            images (ImageList): :class:`ImageList` instance representing N input images
            pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W)
            pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi)
            anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l
            boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training.
            gt_boxes (list[Boxes], optional): A list of N elements.
            smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored
        """
        self.box2box_transform = box2box_transform
        self.anchor_matcher = anchor_matcher
        self.batch_size_per_image = batch_size_per_image
        self.positive_fraction = positive_fraction
        self.pred_objectness_logits = pred_objectness_logits
        self.pred_anchor_deltas = pred_anchor_deltas

        self.anchors = anchors
        self.gt_boxes = gt_boxes
        self.num_feature_maps = len(pred_objectness_logits)
        self.num_images = len(images)
        self.boundary_threshold = boundary_threshold
        self.smooth_l1_beta = smooth_l1_beta

    def _get_ground_truth(self):
        raise NotImplementedError()

    def predict_proposals(self):
        # pred_anchor_deltas: (L, N, ? Hi, Wi)
        # anchors:(N, L, -1, B)
        # here we loop over specific feature map, NOT images
        proposals = []
        anchors = self.anchors.transpose(0, 1)
        for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas):
            B = anchors_i.size(-1)
            N, _, Hi, Wi = pred_anchor_deltas_i.shape
            anchors_i = anchors_i.flatten(start_dim=0, end_dim=1)
            pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B)
            proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i)
            # Append feature map proposals with shape (N, Hi*Wi*A, B)
            proposals.append(proposals_i.view(N, -1, B))
        proposals = torch.stack(proposals)
        return proposals

    def predict_objectness_logits(self):
        """
        Returns:
            pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A).
        """
        pred_objectness_logits = [
            # Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A)
            score.permute(0, 2, 3, 1).reshape(self.num_images, -1)
            for score in self.pred_objectness_logits
        ]
        return pred_objectness_logits


# Main Classes
class Conv2d(nn.Conv2d):
    def __init__(self, *args, **kwargs):
        norm = kwargs.pop("norm", None)
        activation = kwargs.pop("activation", None)
        super().__init__(*args, **kwargs)

        self.norm = norm
        self.activation = activation

    def forward(self, x):
        if x.numel() == 0 and self.training:
            assert not isinstance(self.norm, nn.SyncBatchNorm)
        if x.numel() == 0:
            assert not isinstance(self.norm, nn.GroupNorm)
            output_shape = [
                (i + 2 * p - (di * (k - 1) + 1)) // s + 1
                for i, p, di, k, s in zip(
                    x.shape[-2:],
                    self.padding,
                    self.dilation,
                    self.kernel_size,
                    self.stride,
                )
            ]
            output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
            empty = _NewEmptyTensorOp.apply(x, output_shape)
            if self.training:
                _dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
                return empty + _dummy
            else:
                return empty

        x = super().forward(x)
        if self.norm is not None:
            x = self.norm(x)
        if self.activation is not None:
            x = self.activation(x)
        return x


class LastLevelMaxPool(nn.Module):
    """
    This module is used in the original FPN to generate a downsampled P6 feature from P5.
    """

    def __init__(self):
        super().__init__()
        self.num_levels = 1
        self.in_feature = "p5"

    def forward(self, x):
        return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)]


class LastLevelP6P7(nn.Module):
    """
    This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature.
    """

    def __init__(self, in_channels, out_channels):
        super().__init__()
        self.num_levels = 2
        self.in_feature = "res5"
        self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1)
        self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1)

    def forward(self, c5):
        p6 = self.p6(c5)
        p7 = self.p7(nn.functional.relu(p6))
        return [p6, p7]


class BasicStem(nn.Module):
    def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False):
        super().__init__()
        self.conv1 = Conv2d(
            in_channels,
            out_channels,
            kernel_size=7,
            stride=2,
            padding=3,
            bias=False,
            norm=get_norm(norm, out_channels),
        )
        self.caffe_maxpool = caffe_maxpool
        # use pad 1 instead of pad zero

    def forward(self, x):
        x = self.conv1(x)
        x = nn.functional.relu_(x)
        if self.caffe_maxpool:
            x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True)
        else:
            x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1)
        return x

    @property
    def out_channels(self):
        return self.conv1.out_channels

    @property
    def stride(self):
        return 4  # = stride 2 conv -> stride 2 max pool


class ResNetBlockBase(nn.Module):
    def __init__(self, in_channels, out_channels, stride):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.stride = stride

    def freeze(self):
        for p in self.parameters():
            p.requires_grad = False
        return self


class BottleneckBlock(ResNetBlockBase):
    def __init__(
        self,
        in_channels,
        out_channels,
        bottleneck_channels,
        stride=1,
        num_groups=1,
        norm="BN",
        stride_in_1x1=False,
        dilation=1,
    ):
        super().__init__(in_channels, out_channels, stride)

        if in_channels != out_channels:
            self.shortcut = Conv2d(
                in_channels,
                out_channels,
                kernel_size=1,
                stride=stride,
                bias=False,
                norm=get_norm(norm, out_channels),
            )
        else:
            self.shortcut = None

        # The original MSRA ResNet models have stride in the first 1x1 conv
        # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have
        # stride in the 3x3 conv
        stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride)

        self.conv1 = Conv2d(
            in_channels,
            bottleneck_channels,
            kernel_size=1,
            stride=stride_1x1,
            bias=False,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv2 = Conv2d(
            bottleneck_channels,
            bottleneck_channels,
            kernel_size=3,
            stride=stride_3x3,
            padding=1 * dilation,
            bias=False,
            groups=num_groups,
            dilation=dilation,
            norm=get_norm(norm, bottleneck_channels),
        )

        self.conv3 = Conv2d(
            bottleneck_channels,
            out_channels,
            kernel_size=1,
            bias=False,
            norm=get_norm(norm, out_channels),
        )

    def forward(self, x):
        out = self.conv1(x)
        out = nn.functional.relu_(out)

        out = self.conv2(out)
        out = nn.functional.relu_(out)

        out = self.conv3(out)

        if self.shortcut is not None:
            shortcut = self.shortcut(x)
        else:
            shortcut = x

        out += shortcut
        out = nn.functional.relu_(out)
        return out


class Backbone(nn.Module, metaclass=ABCMeta):
    def __init__(self):
        super().__init__()

    @abstractmethod
    def forward(self):
        pass

    @property
    def size_divisibility(self):
        """
        Some backbones require the input height and width to be divisible by a specific integer. This is
        typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match
        dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required.
        """
        return 0

    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name],
                stride=self._out_feature_strides[name],
            )
            for name in self._out_features
        }

    @property
    def out_features(self):
        """deprecated"""
        return self._out_features

    @property
    def out_feature_strides(self):
        """deprecated"""
        return {f: self._out_feature_strides[f] for f in self._out_features}

    @property
    def out_feature_channels(self):
        """deprecated"""
        return {f: self._out_feature_channels[f] for f in self._out_features}


class ResNet(Backbone):
    def __init__(self, stem, stages, num_classes=None, out_features=None):
        """
        Args:
            stem (nn.Module): a stem module
            stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`.
            num_classes (None or int): if None, will not perform classification.
            out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in:
            "stem", "linear", or "res2" ... If None, will return the output of the last layer.
        """
        super(ResNet, self).__init__()
        self.stem = stem
        self.num_classes = num_classes

        current_stride = self.stem.stride
        self._out_feature_strides = {"stem": current_stride}
        self._out_feature_channels = {"stem": self.stem.out_channels}

        self.stages_and_names = []
        for i, blocks in enumerate(stages):
            for block in blocks:
                assert isinstance(block, ResNetBlockBase), block
                curr_channels = block.out_channels
            stage = nn.Sequential(*blocks)
            name = "res" + str(i + 2)
            self.add_module(name, stage)
            self.stages_and_names.append((stage, name))
            self._out_feature_strides[name] = current_stride = int(
                current_stride * np.prod([k.stride for k in blocks])
            )
            self._out_feature_channels[name] = blocks[-1].out_channels

        if num_classes is not None:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.linear = nn.Linear(curr_channels, num_classes)

            # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour":
            # "The 1000-way fully-connected layer is initialized by
            # drawing weights from a zero-mean Gaussian with std of 0.01."
            nn.init.normal_(self.linear.weight, stddev=0.01)
            name = "linear"

        if out_features is None:
            out_features = [name]
        self._out_features = out_features
        assert len(self._out_features)
        children = [x[0] for x in self.named_children()]
        for out_feature in self._out_features:
            assert out_feature in children, "Available children: {}".format(", ".join(children))

    def forward(self, x):
        outputs = {}
        x = self.stem(x)
        if "stem" in self._out_features:
            outputs["stem"] = x
        for stage, name in self.stages_and_names:
            x = stage(x)
            if name in self._out_features:
                outputs[name] = x
        if self.num_classes is not None:
            x = self.avgpool(x)
            x = self.linear(x)
            if "linear" in self._out_features:
                outputs["linear"] = x
        return outputs

    def output_shape(self):
        return {
            name: ShapeSpec(
                channels=self._out_feature_channels[name],
                stride=self._out_feature_strides[name],
            )
            for name in self._out_features
        }

    @staticmethod
    def make_stage(
        block_class,
        num_blocks,
        first_stride=None,
        *,
        in_channels,
        out_channels,
        **kwargs,
    ):
        """
        Usually, layers that produce the same feature map spatial size
        are defined as one "stage".
        Under such definition, stride_per_block[1:] should all be 1.
        """
        if first_stride is not None:
            assert "stride" not in kwargs and "stride_per_block" not in kwargs
            kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1)
        blocks = []
        for i in range(num_blocks):
            curr_kwargs = {}
            for k, v in kwargs.items():
                if k.endswith("_per_block"):
                    assert len(v) == num_blocks, (
                        f"Argument '{k}' of make_stage should have the " f"same length as num_blocks={num_blocks}."
                    )
                    newk = k[: -len("_per_block")]
                    assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!"
                    curr_kwargs[newk] = v[i]
                else:
                    curr_kwargs[k] = v

            blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs))
            in_channels = out_channels

        return blocks


class ROIPooler(nn.Module):
    """
    Region of interest feature map pooler that supports pooling from one or more
    feature maps.
    """

    def __init__(
        self,
        output_size,
        scales,
        sampling_ratio,
        canonical_box_size=224,
        canonical_level=4,
    ):
        super().__init__()
        # assumption that stride is a power of 2.
        min_level = -math.log2(scales[0])
        max_level = -math.log2(scales[-1])

        # a bunch of testing
        assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level))
        assert len(scales) == max_level - min_level + 1, "not pyramid"
        assert 0 < min_level and min_level <= max_level
        if isinstance(output_size, int):
            output_size = (output_size, output_size)
        assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int)
        if len(scales) > 1:
            assert min_level <= canonical_level and canonical_level <= max_level
        assert canonical_box_size > 0

        self.output_size = output_size
        self.min_level = int(min_level)
        self.max_level = int(max_level)
        self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales)
        self.canonical_level = canonical_level
        self.canonical_box_size = canonical_box_size

    def forward(self, feature_maps, boxes):
        """
        Args:
            feature_maps: List[torch.Tensor(N,C,W,H)]
            box_lists: list[torch.Tensor])
        Returns:
            A tensor of shape(N*B, Channels, output_size, output_size)
        """
        x = [v for v in feature_maps.values()]
        num_level_assignments = len(self.level_poolers)
        assert len(x) == num_level_assignments and len(boxes) == x[0].size(0)

        pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes)

        if num_level_assignments == 1:
            return self.level_poolers[0](x[0], pooler_fmt_boxes)

        level_assignments = assign_boxes_to_levels(
            boxes,
            self.min_level,
            self.max_level,
            self.canonical_box_size,
            self.canonical_level,
        )

        num_boxes = len(pooler_fmt_boxes)
        num_channels = x[0].shape[1]
        output_size = self.output_size[0]

        dtype, device = x[0].dtype, x[0].device
        output = torch.zeros(
            (num_boxes, num_channels, output_size, output_size),
            dtype=dtype,
            device=device,
        )

        for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)):
            inds = torch.nonzero(level_assignments == level).squeeze(1)
            pooler_fmt_boxes_level = pooler_fmt_boxes[inds]
            output[inds] = pooler(x_level, pooler_fmt_boxes_level)

        return output


class ROIOutputs(object):
    def __init__(self, cfg, training=False):
        self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA
        self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS)
        self.training = training
        self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST
        self.min_detections = cfg.MIN_DETECTIONS
        self.max_detections = cfg.MAX_DETECTIONS

        nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST
        if not isinstance(nms_thresh, list):
            nms_thresh = [nms_thresh]
        self.nms_thresh = nms_thresh

    def _predict_boxes(self, proposals, box_deltas, preds_per_image):
        num_pred = box_deltas.size(0)
        B = proposals[0].size(-1)
        K = box_deltas.size(-1) // B
        box_deltas = box_deltas.view(num_pred * K, B)
        proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B)
        proposals = proposals.reshape(-1, B)
        boxes = self.box2box_transform.apply_deltas(box_deltas, proposals)
        return boxes.view(num_pred, K * B).split(preds_per_image, dim=0)

    def _predict_objs(self, obj_logits, preds_per_image):
        probs = nn.functional.softmax(obj_logits, dim=-1)
        probs = probs.split(preds_per_image, dim=0)
        return probs

    def _predict_attrs(self, attr_logits, preds_per_image):
        attr_logits = attr_logits[..., :-1].softmax(-1)
        attr_probs, attrs = attr_logits.max(-1)
        return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0)

    @torch.no_grad()
    def inference(
        self,
        obj_logits,
        attr_logits,
        box_deltas,
        pred_boxes,
        features,
        sizes,
        scales=None,
    ):
        # only the pred boxes is the
        preds_per_image = [p.size(0) for p in pred_boxes]
        boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image)
        obj_scores_all = self._predict_objs(obj_logits, preds_per_image)  # list of length N
        attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image)
        features = features.split(preds_per_image, dim=0)

        # fun for each image too, also I can experiment and do multiple images
        final_results = []
        zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes)
        for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped):
            for nms_t in self.nms_thresh:
                outputs = do_nms(
                    boxes,
                    obj_scores,
                    size,
                    self.score_thresh,
                    nms_t,
                    self.min_detections,
                    self.max_detections,
                )
                if outputs is not None:
                    max_boxes, max_scores, classes, ids = outputs
                    break

            if scales is not None:
                scale_yx = scales[i]
                max_boxes[:, 0::2] *= scale_yx[1]
                max_boxes[:, 1::2] *= scale_yx[0]

            final_results.append(
                (
                    max_boxes,
                    classes,
                    max_scores,
                    attrs[ids],
                    attr_probs[ids],
                    features[i][ids],
                )
            )
        boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results))
        return boxes, classes, class_probs, attrs, attr_probs, roi_features

    def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes):
        pass

    def __call__(
        self,
        obj_logits,
        attr_logits,
        box_deltas,
        pred_boxes,
        features,
        sizes,
        scales=None,
    ):
        if self.training:
            raise NotImplementedError()
        return self.inference(
            obj_logits,
            attr_logits,
            box_deltas,
            pred_boxes,
            features,
            sizes,
            scales=scales,
        )


class Res5ROIHeads(nn.Module):
    """
    ROIHeads perform all per-region computation in an R-CNN.
    It contains logic of cropping the regions, extract per-region features
    (by the res-5 block in this case), and make per-region predictions.
    """

    def __init__(self, cfg, input_shape):
        super().__init__()
        self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
        self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION
        self.in_features = cfg.ROI_HEADS.IN_FEATURES
        self.num_classes = cfg.ROI_HEADS.NUM_CLASSES
        self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT
        self.feature_strides = {k: v.stride for k, v in input_shape.items()}
        self.feature_channels = {k: v.channels for k, v in input_shape.items()}
        self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG
        self.stage_channel_factor = 2 ** 3  # res5 is 8x res2
        self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor

        # self.proposal_matcher = Matcher(
        #     cfg.ROI_HEADS.IOU_THRESHOLDS,
        #     cfg.ROI_HEADS.IOU_LABELS,
        #     allow_low_quality_matches=False,
        # )

        pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION
        pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],)
        sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO
        res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE
        use_attr = cfg.ROI_BOX_HEAD.ATTR
        num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS

        self.pooler = ROIPooler(
            output_size=pooler_resolution,
            scales=pooler_scales,
            sampling_ratio=sampling_ratio,
        )

        self.res5 = self._build_res5_block(cfg)
        if not res5_halve:
            """
            Modifications for VG in RoI heads:
            1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1
            2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2)
            """
            self.res5[0].conv1.stride = (1, 1)
            self.res5[0].shortcut.stride = (1, 1)
            for i in range(3):
                self.res5[i].conv2.padding = (2, 2)
                self.res5[i].conv2.dilation = (2, 2)

        self.box_predictor = FastRCNNOutputLayers(
            self.out_channels,
            self.num_classes,
            self.cls_agnostic_bbox_reg,
            use_attr=use_attr,
            num_attrs=num_attrs,
        )

    def _build_res5_block(self, cfg):
        stage_channel_factor = self.stage_channel_factor  # res5 is 8x res2
        num_groups = cfg.RESNETS.NUM_GROUPS
        width_per_group = cfg.RESNETS.WIDTH_PER_GROUP
        bottleneck_channels = num_groups * width_per_group * stage_channel_factor
        out_channels = self.out_channels
        stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1
        norm = cfg.RESNETS.NORM

        blocks = ResNet.make_stage(
            BottleneckBlock,
            3,
            first_stride=2,
            in_channels=out_channels // 2,
            bottleneck_channels=bottleneck_channels,
            out_channels=out_channels,
            num_groups=num_groups,
            norm=norm,
            stride_in_1x1=stride_in_1x1,
        )
        return nn.Sequential(*blocks)

    def _shared_roi_transform(self, features, boxes):
        x = self.pooler(features, boxes)
        return self.res5(x)

    def forward(self, features, proposal_boxes, gt_boxes=None):
        if self.training:
            """
            see https://github.com/airsplay/py-bottom-up-attention/\
                    blob/master/detectron2/modeling/roi_heads/roi_heads.py
            """
            raise NotImplementedError()

        assert not proposal_boxes[0].requires_grad
        box_features = self._shared_roi_transform(features, proposal_boxes)
        feature_pooled = box_features.mean(dim=[2, 3])  # pooled to 1x1
        obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled)
        return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled


class AnchorGenerator(nn.Module):
    """
    For a set of image sizes and feature maps, computes a set of anchors.
    """

    def __init__(self, cfg, input_shape: List[ShapeSpec]):
        super().__init__()
        sizes = cfg.ANCHOR_GENERATOR.SIZES
        aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS
        self.strides = [x.stride for x in input_shape]
        self.offset = cfg.ANCHOR_GENERATOR.OFFSET
        assert 0.0 <= self.offset < 1.0, self.offset

        """
        sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i
            1. given in absolute lengths in units of the input image;
            2. they do not dynamically scale if the input image size changes.
        aspect_ratios (list[list[float]])
        strides (list[int]): stride of each input feature.
        """

        self.num_features = len(self.strides)
        self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios))
        self._spacial_feat_dim = 4

    def _calculate_anchors(self, sizes, aspect_ratios):
        # If one size (or aspect ratio) is specified and there are multiple feature
        # maps, then we "broadcast" anchors of that single size (or aspect ratio)
        if len(sizes) == 1:
            sizes *= self.num_features
        if len(aspect_ratios) == 1:
            aspect_ratios *= self.num_features
        assert self.num_features == len(sizes)
        assert self.num_features == len(aspect_ratios)

        cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)]

        return cell_anchors

    @property
    def box_dim(self):
        return self._spacial_feat_dim

    @property
    def num_cell_anchors(self):
        """
        Returns:
            list[int]: Each int is the number of anchors at every pixel location, on that feature map.
        """
        return [len(cell_anchors) for cell_anchors in self.cell_anchors]

    def grid_anchors(self, grid_sizes):
        anchors = []
        for (size, stride, base_anchors) in zip(grid_sizes, self.strides, self.cell_anchors):
            shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device)
            shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)

            anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4))

        return anchors

    def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)):
        """
        anchors are continuous geometric rectangles
        centered on one feature map point sample.
        We can later build the set of anchors
        for the entire feature map by tiling these tensors
        """

        anchors = []
        for size in sizes:
            area = size ** 2.0
            for aspect_ratio in aspect_ratios:
                w = math.sqrt(area / aspect_ratio)
                h = aspect_ratio * w
                x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
                anchors.append([x0, y0, x1, y1])
        return nn.Parameter(torch.tensor(anchors))

    def forward(self, features):
        """
        Args:
            features List[torch.Tensor]: list of feature maps on which to generate anchors.
        Returns:
            torch.Tensor: a list of #image elements.
        """
        num_images = features[0].size(0)
        grid_sizes = [feature_map.shape[-2:] for feature_map in features]
        anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
        anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps)
        return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0)


class RPNHead(nn.Module):
    """
    RPN classification and regression heads. Uses a 3x3 conv to produce a shared
    hidden state from which one 1x1 conv predicts objectness logits for each anchor
    and a second 1x1 conv predicts bounding-box deltas specifying how to deform
    each anchor into an object proposal.
    """

    def __init__(self, cfg, input_shape: List[ShapeSpec]):
        super().__init__()

        # Standard RPN is shared across levels:
        in_channels = [s.channels for s in input_shape]
        assert len(set(in_channels)) == 1, "Each level must have the same channel!"
        in_channels = in_channels[0]

        anchor_generator = AnchorGenerator(cfg, input_shape)
        num_cell_anchors = anchor_generator.num_cell_anchors
        box_dim = anchor_generator.box_dim
        assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors"
        num_cell_anchors = num_cell_anchors[0]

        if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1:
            hid_channels = in_channels
        else:
            hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS
            # Modifications for VG in RPN (modeling/proposal_generator/rpn.py)
            # Use hidden dim  instead fo the same dim as Res4 (in_channels)

        # 3x3 conv for the hidden representation
        self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1)
        # 1x1 conv for predicting objectness logits
        self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1)
        # 1x1 conv for predicting box2box transform deltas
        self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1)

        for layer in [self.conv, self.objectness_logits, self.anchor_deltas]:
            nn.init.normal_(layer.weight, std=0.01)
            nn.init.constant_(layer.bias, 0)

    def forward(self, features):
        """
        Args:
            features (list[Tensor]): list of feature maps
        """
        pred_objectness_logits = []
        pred_anchor_deltas = []
        for x in features:
            t = nn.functional.relu(self.conv(x))
            pred_objectness_logits.append(self.objectness_logits(t))
            pred_anchor_deltas.append(self.anchor_deltas(t))
        return pred_objectness_logits, pred_anchor_deltas


class RPN(nn.Module):
    """
    Region Proposal Network, introduced by the Faster R-CNN paper.
    """

    def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
        super().__init__()

        self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE
        self.in_features = cfg.RPN.IN_FEATURES
        self.nms_thresh = cfg.RPN.NMS_THRESH
        self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE
        self.positive_fraction = cfg.RPN.POSITIVE_FRACTION
        self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA
        self.loss_weight = cfg.RPN.LOSS_WEIGHT

        self.pre_nms_topk = {
            True: cfg.RPN.PRE_NMS_TOPK_TRAIN,
            False: cfg.RPN.PRE_NMS_TOPK_TEST,
        }
        self.post_nms_topk = {
            True: cfg.RPN.POST_NMS_TOPK_TRAIN,
            False: cfg.RPN.POST_NMS_TOPK_TEST,
        }
        self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH

        self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features])
        self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS)
        self.anchor_matcher = Matcher(
            cfg.RPN.IOU_THRESHOLDS,
            cfg.RPN.IOU_LABELS,
            allow_low_quality_matches=True,
        )
        self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features])

    def training(self, images, image_shapes, features, gt_boxes):
        pass

    def inference(self, outputs, images, image_shapes, features, gt_boxes=None):
        outputs = find_top_rpn_proposals(
            outputs.predict_proposals(),
            outputs.predict_objectness_logits(),
            images,
            image_shapes,
            self.nms_thresh,
            self.pre_nms_topk[self.training],
            self.post_nms_topk[self.training],
            self.min_box_side_len,
            self.training,
        )

        results = []
        for img in outputs:
            im_boxes, img_box_logits = img
            img_box_logits, inds = img_box_logits.sort(descending=True)
            im_boxes = im_boxes[inds]
            results.append((im_boxes, img_box_logits))

        (proposal_boxes, logits) = tuple(map(list, zip(*results)))
        return proposal_boxes, logits

    def forward(self, images, image_shapes, features, gt_boxes=None):
        """
        Args:
            images (torch.Tensor): input images of length `N`
            features (dict[str: Tensor])
            gt_instances
        """
        # features is dict, key = block level, v = feature_map
        features = [features[f] for f in self.in_features]
        pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features)
        anchors = self.anchor_generator(features)
        outputs = RPNOutputs(
            self.box2box_transform,
            self.anchor_matcher,
            self.batch_size_per_image,
            self.positive_fraction,
            images,
            pred_objectness_logits,
            pred_anchor_deltas,
            anchors,
            self.boundary_threshold,
            gt_boxes,
            self.smooth_l1_beta,
        )
        # For RPN-only models, the proposals are the final output

        if self.training:
            raise NotImplementedError()
            return self.training(outputs, images, image_shapes, features, gt_boxes)
        else:
            return self.inference(outputs, images, image_shapes, features, gt_boxes)


class FastRCNNOutputLayers(nn.Module):
    """
    Two linear layers for predicting Fast R-CNN outputs:
      (1) proposal-to-detection box regression deltas
      (2) classification scores
    """

    def __init__(
        self,
        input_size,
        num_classes,
        cls_agnostic_bbox_reg,
        box_dim=4,
        use_attr=False,
        num_attrs=-1,
    ):
        """
        Args:
            input_size (int): channels, or (channels, height, width)
            num_classes (int)
            cls_agnostic_bbox_reg (bool)
            box_dim (int)
        """
        super().__init__()

        if not isinstance(input_size, int):
            input_size = np.prod(input_size)

        # (do + 1 for background class)
        self.cls_score = nn.Linear(input_size, num_classes + 1)
        num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes
        self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim)

        self.use_attr = use_attr
        if use_attr:
            """
            Modifications for VG in RoI heads
            Embedding: {num_classes + 1} --> {input_size // 8}
            Linear: {input_size + input_size // 8} --> {input_size // 4}
            Linear: {input_size // 4} --> {num_attrs + 1}
            """
            self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8)
            self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4)
            self.attr_score = nn.Linear(input_size // 4, num_attrs + 1)

        nn.init.normal_(self.cls_score.weight, std=0.01)
        nn.init.normal_(self.bbox_pred.weight, std=0.001)
        for item in [self.cls_score, self.bbox_pred]:
            nn.init.constant_(item.bias, 0)

    def forward(self, roi_features):
        if roi_features.dim() > 2:
            roi_features = torch.flatten(roi_features, start_dim=1)
        scores = self.cls_score(roi_features)
        proposal_deltas = self.bbox_pred(roi_features)
        if self.use_attr:
            _, max_class = scores.max(-1)  # [b, c] --> [b]
            cls_emb = self.cls_embedding(max_class)  # [b] --> [b, 256]
            roi_features = torch.cat([roi_features, cls_emb], -1)  # [b, 2048] + [b, 256] --> [b, 2304]
            roi_features = self.fc_attr(roi_features)
            roi_features = nn.functional.relu(roi_features)
            attr_scores = self.attr_score(roi_features)
            return scores, attr_scores, proposal_deltas
        else:
            return scores, proposal_deltas


class GeneralizedRCNN(nn.Module):
    def __init__(self, cfg):
        super().__init__()

        self.backbone = build_backbone(cfg)
        self.proposal_generator = RPN(cfg, self.backbone.output_shape())
        self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape())
        self.roi_outputs = ROIOutputs(cfg)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        config = kwargs.pop("config", None)
        state_dict = kwargs.pop("state_dict", None)
        cache_dir = kwargs.pop("cache_dir", None)
        from_tf = kwargs.pop("from_tf", False)
        force_download = kwargs.pop("force_download", False)
        resume_download = kwargs.pop("resume_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", False)
        use_cdn = kwargs.pop("use_cdn", True)

        # Load config if we don't provide a configuration
        if not isinstance(config, Config):
            config_path = config if config is not None else pretrained_model_name_or_path
            # try:
            config = Config.from_pretrained(
                config_path,
                cache_dir=cache_dir,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
            )

        # Load model
        if pretrained_model_name_or_path is not None:
            if os.path.isdir(pretrained_model_name_or_path):
                if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
                    # Load from a PyTorch checkpoint
                    archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
                else:
                    raise EnvironmentError(
                        "Error no file named {} found in directory {} ".format(
                            WEIGHTS_NAME,
                            pretrained_model_name_or_path,
                        )
                    )
            elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
                archive_file = pretrained_model_name_or_path
            elif os.path.isfile(pretrained_model_name_or_path + ".index"):
                assert (
                    from_tf
                ), "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format(
                    pretrained_model_name_or_path + ".index"
                )
                archive_file = pretrained_model_name_or_path + ".index"
            else:
                archive_file = hf_bucket_url(
                    pretrained_model_name_or_path,
                    filename=WEIGHTS_NAME,
                    use_cdn=use_cdn,
                )

            try:
                # Load from URL or cache if already cached
                resolved_archive_file = cached_path(
                    archive_file,
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
                )
                if resolved_archive_file is None:
                    raise EnvironmentError
            except EnvironmentError:
                msg = f"Can't load weights for '{pretrained_model_name_or_path}'."
                raise EnvironmentError(msg)

            if resolved_archive_file == archive_file:
                print("loading weights file {}".format(archive_file))
            else:
                print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file))
        else:
            resolved_archive_file = None

        # Instantiate model.
        model = cls(config)

        if state_dict is None:
            try:
                try:
                    state_dict = torch.load(resolved_archive_file, map_location="cpu")
                except Exception:
                    state_dict = load_checkpoint(resolved_archive_file)

            except Exception:
                raise OSError(
                    "Unable to load weights from pytorch checkpoint file. "
                    "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
                )

        missing_keys = []
        unexpected_keys = []
        error_msgs = []

        # Convert old format to new format if needed from a PyTorch state_dict
        old_keys = []
        new_keys = []
        for key in state_dict.keys():
            new_key = None
            if "gamma" in key:
                new_key = key.replace("gamma", "weight")
            if "beta" in key:
                new_key = key.replace("beta", "bias")
            if new_key:
                old_keys.append(key)
                new_keys.append(new_key)
        for old_key, new_key in zip(old_keys, new_keys):
            state_dict[new_key] = state_dict.pop(old_key)

        # copy state_dict so _load_from_state_dict can modify it
        metadata = getattr(state_dict, "_metadata", None)
        state_dict = state_dict.copy()
        if metadata is not None:
            state_dict._metadata = metadata

        model_to_load = model
        model_to_load.load_state_dict(state_dict)

        if model.__class__.__name__ != model_to_load.__class__.__name__:
            base_model_state_dict = model_to_load.state_dict().keys()
            head_model_state_dict_without_base_prefix = [
                key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
            ]
            missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)

        if len(unexpected_keys) > 0:
            print(
                f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when "
                f"initializing {model.__class__.__name__}: {unexpected_keys}\n"
                f"- This IS expected if you are initializing {model.__class__.__name__} from the checkpoint of a model trained on another task "
                f"or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n"
                f"- This IS NOT expected if you are initializing {model.__class__.__name__} from the checkpoint of a model that you expect "
                f"to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)."
            )
        else:
            print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
        if len(missing_keys) > 0:
            print(
                f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at {pretrained_model_name_or_path} "
                f"and are newly initialized: {missing_keys}\n"
                f"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference."
            )
        else:
            print(
                f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at {pretrained_model_name_or_path}.\n"
                f"If your task is similar to the task the model of the checkpoint was trained on, "
                f"you can already use {model.__class__.__name__} for predictions without further training."
            )
        if len(error_msgs) > 0:
            raise RuntimeError(
                "Error(s) in loading state_dict for {}:\n\t{}".format(
                    model.__class__.__name__, "\n\t".join(error_msgs)
                )
            )
        # Set model in evaluation mode to deactivate DropOut modules by default
        model.eval()
        return model

    def forward(
        self,
        images,
        image_shapes,
        gt_boxes=None,
        proposals=None,
        scales_yx=None,
        **kwargs,
    ):
        """
        kwargs:
            max_detections (int), return_tensors {"np", "pt", None}, padding {None,
            "max_detections"}, pad_value (int), location = {"cuda", "cpu"}
        """
        data = next(self.parameters()).data
        with torch.no_grad():
         if self.training:
             print ("warning. you are attempting to train the frcnn model which is not supportd. switching to eval mode")
             self.eval()
             for param in self.parameters():
               param.requires_grad_(False)
         #print (image_shapes.dtype)
         return self.inference(
             images=images.to(dtype=data.dtype, device=data.device),
             image_shapes=image_shapes.to(device=data.device),
             gt_boxes=gt_boxes.to(dtype=data.dtype, device=data.device) if gt_boxes is not None else None,
             proposals=proposals.to(dtype=data.dtype, device=data.device) if proposals is not None else None,
             scales_yx=scales_yx.to(dtype=data.dtype, device=data.device) if scales_yx is not None else None,
             **kwargs,
         )

    @torch.no_grad()
    def inference(
        self,
        images,
        image_shapes,
        gt_boxes=None,
        proposals=None,
        scales_yx=None,
        **kwargs,
    ):
        # run images through backbone
        original_sizes = image_shapes * scales_yx
        features = self.backbone(images)

        # generate proposals if none are available
        if proposals is None:
            proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes)
        else:
            assert proposals is not None

        # pool object features from either gt_boxes, or from proposals
        obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes)

        # prepare FRCNN Outputs and select top proposals
        boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs(
            obj_logits=obj_logits,
            attr_logits=attr_logits,
            box_deltas=box_deltas,
            pred_boxes=proposal_boxes,
            features=feature_pooled,
            sizes=image_shapes,
            scales=scales_yx,
        )

        # will we pad???
        subset_kwargs = {
            "max_detections": kwargs.get("max_detections", None),
            "return_tensors": kwargs.get("return_tensors", None),
            "pad_value": kwargs.get("pad_value", 0),
            "padding": kwargs.get("padding", None),
        }
        preds_per_image = torch.tensor([p.size(0) for p in boxes])
        boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs)
        classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs)
        class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs)
        attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs)
        attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs)
        roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs)
        subset_kwargs["padding"] = None
        preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs)
        sizes = pad_list_tensors(image_shapes, None, **subset_kwargs)
        #print (boxes.device, original_sizes.device)
        normalized_boxes = norm_box(boxes, original_sizes.to(boxes.device))
        return OrderedDict(
            {
                "obj_ids": classes,
                "obj_probs": class_probs,
                "attr_ids": attrs,
                "attr_probs": attr_probs,
                "boxes": boxes,
                "sizes": sizes,
                "preds_per_image": preds_per_image,
                "roi_features": roi_features,
                "normalized_boxes": normalized_boxes,
            }
        )