https://huggingface.co/ibm-granite/granite-timeseries-patchtst with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @huggingface/transformers

Example: Time series forecasting w/ onnx-community/granite-timeseries-patchtst

import { PatchTSTForPrediction, Tensor } from "@huggingface/transformers";

const model_id = "onnx-community/granite-timeseries-patchtst";
const model = await PatchTSTForPrediction.from_pretrained(model_id, { dtype: "fp32" });

const dims = [64, 512, 7];
const prod = dims.reduce((a, b) => a * b, 1);
const past_values = new Tensor('float32',
    Float32Array.from({ length: prod }, (_, i) => i / prod),
    dims,
);
const { prediction_outputs } = await model({ past_values });
console.log(prediction_outputs);

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
162
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support time-series-forecasting models for transformers.js library.

Model tree for onnx-community/granite-timeseries-patchtst

Quantized
(1)
this model