Optimize model to remove two DFT nodes and some reshapes
#2
by
justinchuby
- opened
ONNX Model Information:
Inputs:
- Name: INPUT, Shape: ['unk__1797', 144000], Type: tensor(float)
Outputs:
- Name: Identity_0, Shape: ['unk__1798', 6522], Type: tensor(float)
TFLite Model Information:
Inputs:
- Name: INPUT, Shape: [ 1 144000], Type: <class 'numpy.float32'>
Outputs:
- Name: Identity, Shape: [ 1 6522], Type: <class 'numpy.float32'>
Generating random inputs:
- INPUT: shape=(1, 144000), dtype=float32
Running ONNX model inference...
Running TFLite model inference...
================================================================================
COMPARISON RESULTS
================================================================================
Output 0:
ONNX Runtime shape: (1, 6522), dtype: float32
TFLite shape: (1, 6522), dtype: float32
ONNX Runtime vs TFLite:
Max difference: 0.0000267029
Mean difference: 0.0000058674
Relative tolerance: 1e-05
Absolute tolerance: 1e-05
β
Outputs match within tolerance
================================================================================
β
ALL OUTPUTS MATCH!
================================================================================
Benchmarking ONNX model (10 warmup + 100 test runs)...
Benchmarking TFLite model (10 warmup + 100 test runs)...
================================================================================
BENCHMARK RESULTS
================================================================================
ONNX Model:
Mean: 43.129 ms
Median: 42.937 ms
Std: 0.544 ms
Min: 42.518 ms
Max: 44.864 ms
TFLite Model:
Mean: 26.878 ms
Median: 26.283 ms
Std: 1.665 ms
Min: 26.152 ms
Max: 37.190 ms
Comparison:
TFLite is 1.60x faster than ONNX Runtime
Difference: 16.251 ms
================================================================================
justinchuby
changed pull request status to
merged