File size: 3,157 Bytes
52ab9a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.649850827230811
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Boya1_RMSProp_1-e5_20Epoch_09Momentum_Beit-base-patch16_fold5
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 3.1823
- Accuracy: 0.6499
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.1635 | 1.0 | 924 | 1.1860 | 0.5948 |
| 1.0619 | 2.0 | 1848 | 1.0310 | 0.6455 |
| 0.646 | 3.0 | 2772 | 1.0620 | 0.6509 |
| 0.3294 | 4.0 | 3696 | 1.2169 | 0.6599 |
| 0.2648 | 5.0 | 4620 | 1.4374 | 0.6455 |
| 0.1957 | 6.0 | 5544 | 1.7164 | 0.6420 |
| 0.131 | 7.0 | 6468 | 2.0272 | 0.6488 |
| 0.0817 | 8.0 | 7392 | 2.2750 | 0.6447 |
| 0.0483 | 9.0 | 8316 | 2.4384 | 0.6431 |
| 0.0451 | 10.0 | 9240 | 2.6186 | 0.6447 |
| 0.0224 | 11.0 | 10164 | 2.7368 | 0.6463 |
| 0.0134 | 12.0 | 11088 | 2.9439 | 0.6477 |
| 0.0023 | 13.0 | 12012 | 2.9691 | 0.6520 |
| 0.0074 | 14.0 | 12936 | 3.0721 | 0.6450 |
| 0.0231 | 15.0 | 13860 | 3.1373 | 0.6499 |
| 0.0004 | 16.0 | 14784 | 3.2089 | 0.6474 |
| 0.0062 | 17.0 | 15708 | 3.1483 | 0.6493 |
| 0.0132 | 18.0 | 16632 | 3.1830 | 0.6515 |
| 0.0034 | 19.0 | 17556 | 3.1843 | 0.6474 |
| 0.0796 | 20.0 | 18480 | 3.1823 | 0.6499 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|