File size: 7,567 Bytes
b5a6361
 
 
 
c8dcf73
 
b5a6361
 
 
c8dcf73
 
b5a6361
 
 
 
 
 
 
 
 
 
c8dcf73
b5a6361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
base_model: ondevicellm/tinyllama_moe_sft_ultrachat200k_v2_epochs3
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
- generated_from_trainer
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: tinyllama_moe_dpo_ultrachat_v2_epochs3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tinyllama_moe_dpo_ultrachat_v2_epochs3

This model is a fine-tuned version of [ondevicellm/tinyllama_moe_sft_ultrachat200k_v2_epochs3](https://huggingface.co/ondevicellm/tinyllama_moe_sft_ultrachat200k_v2_epochs3) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5855
- Rewards/chosen: -0.9040
- Rewards/rejected: -1.3959
- Rewards/accuracies: 0.7262
- Rewards/margins: 0.4918
- Logps/rejected: -442.2930
- Logps/chosen: -435.4489
- Logits/rejected: -2.3585
- Logits/chosen: -2.4345

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 96
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6914        | 0.1   | 100  | 0.6913          | 0.0043         | -0.0005          | 0.6349             | 0.0048          | -302.7554      | -344.6115    | -2.9876         | -3.0405       |
| 0.6836        | 0.21  | 200  | 0.6830          | 0.0149         | -0.0095          | 0.6448             | 0.0244          | -303.6508      | -343.5497    | -2.9700         | -3.0243       |
| 0.6662        | 0.31  | 300  | 0.6712          | -0.0134        | -0.0687          | 0.6746             | 0.0553          | -309.5701      | -346.3836    | -2.9423         | -2.9976       |
| 0.6538        | 0.42  | 400  | 0.6571          | -0.0814        | -0.1804          | 0.6766             | 0.0990          | -320.7438      | -353.1802    | -2.8979         | -2.9548       |
| 0.6405        | 0.52  | 500  | 0.6448          | -0.1949        | -0.3451          | 0.6726             | 0.1502          | -337.2181      | -364.5344    | -2.8541         | -2.9120       |
| 0.6394        | 0.63  | 600  | 0.6372          | -0.2303        | -0.4148          | 0.6825             | 0.1845          | -344.1863      | -368.0754    | -2.8147         | -2.8733       |
| 0.6218        | 0.73  | 700  | 0.6313          | -0.2894        | -0.5107          | 0.6825             | 0.2213          | -353.7792      | -373.9845    | -2.7666         | -2.8269       |
| 0.6035        | 0.84  | 800  | 0.6249          | -0.3614        | -0.6145          | 0.6845             | 0.2531          | -364.1536      | -381.1849    | -2.7056         | -2.7681       |
| 0.6326        | 0.94  | 900  | 0.6204          | -0.5259        | -0.8008          | 0.6845             | 0.2749          | -382.7857      | -397.6345    | -2.6568         | -2.7207       |
| 0.6103        | 1.05  | 1000 | 0.6145          | -0.5164        | -0.8178          | 0.6944             | 0.3014          | -384.4856      | -396.6823    | -2.6322         | -2.6969       |
| 0.6002        | 1.15  | 1100 | 0.6116          | -0.5179        | -0.8325          | 0.6925             | 0.3146          | -385.9578      | -396.8333    | -2.6024         | -2.6688       |
| 0.5729        | 1.26  | 1200 | 0.6083          | -0.5838        | -0.9200          | 0.7044             | 0.3362          | -394.7073      | -403.4271    | -2.5708         | -2.6376       |
| 0.599         | 1.36  | 1300 | 0.6077          | -0.5206        | -0.8453          | 0.7103             | 0.3247          | -387.2310      | -397.1021    | -2.5454         | -2.6134       |
| 0.5821        | 1.47  | 1400 | 0.6025          | -0.5941        | -0.9561          | 0.7063             | 0.3620          | -398.3106      | -404.4496    | -2.5211         | -2.5900       |
| 0.574         | 1.57  | 1500 | 0.5977          | -0.6617        | -1.0471          | 0.7143             | 0.3854          | -407.4162      | -411.2178    | -2.4887         | -2.5593       |
| 0.5716        | 1.67  | 1600 | 0.5955          | -0.6765        | -1.0870          | 0.7282             | 0.4105          | -411.4020      | -412.6956    | -2.4651         | -2.5369       |
| 0.5477        | 1.78  | 1700 | 0.5904          | -0.8020        | -1.2430          | 0.7321             | 0.4410          | -427.0003      | -425.2423    | -2.4342         | -2.5079       |
| 0.5718        | 1.88  | 1800 | 0.5898          | -0.7932        | -1.2439          | 0.7321             | 0.4507          | -427.0937      | -424.3631    | -2.4186         | -2.4928       |
| 0.563         | 1.99  | 1900 | 0.5904          | -0.6874        | -1.1313          | 0.7202             | 0.4439          | -415.8328      | -413.7807    | -2.4223         | -2.4961       |
| 0.5633        | 2.09  | 2000 | 0.5884          | -0.7564        | -1.2105          | 0.7262             | 0.4541          | -423.7504      | -420.6851    | -2.4073         | -2.4819       |
| 0.5564        | 2.2   | 2100 | 0.5878          | -0.8150        | -1.2802          | 0.7262             | 0.4652          | -430.7243      | -426.5488    | -2.3948         | -2.4696       |
| 0.5373        | 2.3   | 2200 | 0.5865          | -0.8791        | -1.3602          | 0.7341             | 0.4812          | -438.7289      | -432.9532    | -2.3795         | -2.4548       |
| 0.5559        | 2.41  | 2300 | 0.5872          | -0.8476        | -1.3260          | 0.7242             | 0.4784          | -435.3001      | -429.7996    | -2.3743         | -2.4496       |
| 0.5467        | 2.51  | 2400 | 0.5868          | -0.8483        | -1.3274          | 0.7222             | 0.4790          | -435.4401      | -429.8786    | -2.3697         | -2.4452       |
| 0.5666        | 2.62  | 2500 | 0.5858          | -0.8754        | -1.3626          | 0.7242             | 0.4872          | -438.9631      | -432.5811    | -2.3641         | -2.4399       |
| 0.5113        | 2.72  | 2600 | 0.5856          | -0.8942        | -1.3842          | 0.7242             | 0.4900          | -441.1211      | -434.4620    | -2.3604         | -2.4361       |
| 0.5601        | 2.83  | 2700 | 0.5855          | -0.9040        | -1.3959          | 0.7262             | 0.4918          | -442.2930      | -435.4489    | -2.3585         | -2.4345       |
| 0.5303        | 2.93  | 2800 | 0.5857          | -0.9003        | -1.3898          | 0.7242             | 0.4894          | -441.6805      | -435.0786    | -2.3581         | -2.4342       |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.14.6
- Tokenizers 0.15.0