Edit model card

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7180
  • Answer: {'precision': 0.596, 'recall': 0.7367119901112484, 'f1': 0.6589275843007186, 'number': 809}
  • Header: {'precision': 0.08571428571428572, 'recall': 0.05042016806722689, 'f1': 0.06349206349206349, 'number': 119}
  • Question: {'precision': 0.6859706362153344, 'recall': 0.7896713615023474, 'f1': 0.7341772151898733, 'number': 1065}
  • Overall Precision: 0.6285
  • Overall Recall: 0.7240
  • Overall F1: 0.6729
  • Overall Accuracy: 0.7704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.6774 1.0 19 1.3758 {'precision': 0.06839378238341969, 'recall': 0.0815822002472188, 'f1': 0.07440811724915444, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.332824427480916, 'recall': 0.40938967136150234, 'f1': 0.367157894736842, 'number': 1065} 0.2207 0.2519 0.2352 0.4928
1.169 2.0 38 0.9500 {'precision': 0.4467425025853154, 'recall': 0.5339925834363412, 'f1': 0.48648648648648646, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.557753164556962, 'recall': 0.6619718309859155, 'f1': 0.605410047230571, 'number': 1065} 0.5076 0.5705 0.5372 0.6799
0.8429 3.0 57 0.7922 {'precision': 0.5751953125, 'recall': 0.7280593325092707, 'f1': 0.6426623022367702, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.6494676494676495, 'recall': 0.7446009389671362, 'f1': 0.6937882764654418, 'number': 1065} 0.6051 0.6934 0.6462 0.7457
0.6915 4.0 76 0.7294 {'precision': 0.5885262116716122, 'recall': 0.7354758961681088, 'f1': 0.6538461538461539, 'number': 809} {'precision': 0.05172413793103448, 'recall': 0.025210084033613446, 'f1': 0.03389830508474576, 'number': 119} {'precision': 0.6642628205128205, 'recall': 0.7784037558685446, 'f1': 0.7168179853004755, 'number': 1065} 0.6159 0.7160 0.6622 0.7651
0.6221 5.0 95 0.7180 {'precision': 0.596, 'recall': 0.7367119901112484, 'f1': 0.6589275843007186, 'number': 809} {'precision': 0.08571428571428572, 'recall': 0.05042016806722689, 'f1': 0.06349206349206349, 'number': 119} {'precision': 0.6859706362153344, 'recall': 0.7896713615023474, 'f1': 0.7341772151898733, 'number': 1065} 0.6285 0.7240 0.6729 0.7704

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.4.0+cpu
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
113M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for omcar/layoutlm-funsd

Finetuned
(135)
this model