omarhkh's picture
update model card README.md
968fb3b
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: resnet-50-finetuned-omars1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6666666666666666

resnet-50-finetuned-omars1

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2536
  • Accuracy: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3877 1.0 11 1.3919 0.2564
1.383 2.0 22 1.3813 0.3077
1.366 3.0 33 1.3663 0.3077
1.348 4.0 44 1.3393 0.4103
1.3034 5.0 55 1.2699 0.5641
1.2227 6.0 66 1.1615 0.6154
1.0912 7.0 77 1.1262 0.6154
0.9553 8.0 88 1.1313 0.5897
0.8801 9.0 99 1.1711 0.6667
0.8017 10.0 110 1.0136 0.6667
0.7451 11.0 121 0.9310 0.6923
0.6817 12.0 132 0.8635 0.6667
0.6579 13.0 143 1.1545 0.6667
0.6357 14.0 154 0.9239 0.6154
0.6006 15.0 165 1.0271 0.6667
0.5551 16.0 176 1.1781 0.5897
0.5619 17.0 187 1.1831 0.6923
0.5359 18.0 198 0.9667 0.6667
0.5247 19.0 209 1.1237 0.6667
0.5134 20.0 220 1.1176 0.6410
0.4469 21.0 231 0.9955 0.7179
0.4908 22.0 242 1.1411 0.7179
0.4112 23.0 253 1.2766 0.6410
0.4225 24.0 264 1.1135 0.6923
0.4786 25.0 275 1.2243 0.7179
0.3908 26.0 286 1.1587 0.7179
0.4706 27.0 297 1.2236 0.6923
0.502 28.0 308 1.1733 0.7179
0.4514 29.0 319 1.0931 0.7436
0.4386 30.0 330 1.2536 0.6667

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.0
  • Tokenizers 0.13.3