See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: microsoft/phi-2
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- c46283424f0b5d2a_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/c46283424f0b5d2a_train_data.json
type:
field_instruction: question
field_output: query
format: '{instruction}'
no_input_format: '{instruction}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: oliverchang/18dac2dc-fb84-47b9-aaf7-7ceb1242f230
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 20000000
micro_batch_size: 2
mlflow_experiment_name: /tmp/c46283424f0b5d2a_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 18dac2dc-fb84-47b9-aaf7-7ceb1242f230
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 18dac2dc-fb84-47b9-aaf7-7ceb1242f230
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
18dac2dc-fb84-47b9-aaf7-7ceb1242f230
This model is a fine-tuned version of microsoft/phi-2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4429
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1128
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8994 | 0.0009 | 1 | 2.0234 |
0.939 | 0.0444 | 50 | 0.8451 |
0.7808 | 0.0887 | 100 | 0.7711 |
0.9628 | 0.1331 | 150 | 0.7313 |
0.6268 | 0.1774 | 200 | 0.6124 |
0.8939 | 0.2218 | 250 | 0.5876 |
0.6337 | 0.2661 | 300 | 0.5524 |
0.513 | 0.3105 | 350 | 0.5673 |
0.7696 | 0.3548 | 400 | 0.5626 |
0.5483 | 0.3992 | 450 | 0.5483 |
0.4969 | 0.4436 | 500 | 0.5449 |
0.4714 | 0.4879 | 550 | 0.5080 |
0.4638 | 0.5323 | 600 | 0.4898 |
0.3513 | 0.5766 | 650 | 0.4703 |
0.4209 | 0.6210 | 700 | 0.4609 |
0.541 | 0.6653 | 750 | 0.4660 |
0.412 | 0.7097 | 800 | 0.4570 |
0.4849 | 0.7540 | 850 | 0.4576 |
0.4414 | 0.7984 | 900 | 0.4516 |
0.5111 | 0.8428 | 950 | 0.4461 |
0.53 | 0.8871 | 1000 | 0.4435 |
0.4098 | 0.9315 | 1050 | 0.4421 |
0.4856 | 0.9758 | 1100 | 0.4429 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for oliverchang/18dac2dc-fb84-47b9-aaf7-7ceb1242f230
Base model
microsoft/phi-2