ControlNet Head Mesh SDXL

ControlNet Example(Conditioned on 3D Head Mesh)

images_0)

Head Mesh Processor Install

pip install git+https://github.com/KupynOrest/head_detector.git

Code to Use Mesh Control

from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers import EulerAncestralDiscreteScheduler
from PIL import Image
import torch
import numpy as np
import cv2

from head_detector import HeadDetector

detector = HeadDetector()

def resize_image(image):
    height, width = image.shape[:2]
    
    scale_factor = 1024.0 / max(height, width)
    new_width = int(width * scale_factor)
    new_height = int(height * scale_factor)

    resized_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)

    return resized_image

def read_rgb_image(image_path):
    image = cv2.imread(image_path)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    return image

IMAGE_PATH = "your image path"

controlnet_conditioning_scale = 1.0  
prompt = "your prompt, the longer the better, you can describe it as detail as possible"
negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'

eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler")


controlnet = ControlNetModel.from_pretrained(
    "okupyn/head-mesh-controlnet-xl",
    torch_dtype=torch.float16
)

# when test with other base model, you need to change the vae also.
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    vae=vae,
    safety_checker=None,
    torch_dtype=torch.float16,
    scheduler=eulera_scheduler,
)
#pipe = pipe.to("cuda")

image = resize_image(read_rgb_image(IMAGE_PATH))

controlnet_img = detector(image).get_pncc()
controlnet_img = Image.fromarray(controlnet_img)


images = pipe(
    prompt,
    negative_prompt=negative_prompt,
    image=controlnet_img,
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    num_inference_steps=30,
    ).images

images[0].save(f"your image save path")

license: cc-by-nc-4.0 library_name: diffusers

Downloads last month
19
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.