mt5-base for Turkish Question Generation
Automated question generation and question answering using text-to-text transformers by OBSS AI.
from core.api import GenerationAPI
generation_api = GenerationAPI('mt5-base-3task-highlight-combined3')
Citation 📜
@article{akyon2021automated,
title={Automated question generation and question answering from Turkish texts using text-to-text transformers},
author={Akyon, Fatih Cagatay and Cavusoglu, Devrim and Cengiz, Cemil and Altinuc, Sinan Onur and Temizel, Alptekin},
journal={arXiv preprint arXiv:2111.06476},
year={2021}
}
Overview ✔️
Language model: mt5-base
Language: Turkish
Downstream-task: Extractive QA/QG, Answer Extraction
Training data: TQuADv2-train, TQuADv2-val, XQuAD.tr
Code: https://github.com/obss/turkish-question-generation
Paper: https://arxiv.org/abs/2111.06476
Hyperparameters
batch_size = 256
n_epochs = 15
base_LM_model = "mt5-base"
max_source_length = 512
max_target_length = 64
learning_rate = 1.0e-3
task_lisst = ["qa", "qg", "ans_ext"]
qg_format = "highlight"
Performance
Refer to paper.
Usage 🔥
from core.api import GenerationAPI
generation_api = GenerationAPI('mt5-base-3task-highlight-combined3')
context = """
Bu modelin eğitiminde, Türkçe soru cevap verileri kullanılmıştır.
Çalışmada sunulan yöntemle, Türkçe metinlerden otomatik olarak soru ve cevap
üretilebilir. Bu proje ile paylaşılan kaynak kodu ile Türkçe Soru Üretme
/ Soru Cevaplama konularında yeni akademik çalışmalar yapılabilir.
Projenin detaylarına paylaşılan Github ve Arxiv linklerinden ulaşılabilir.
"""
# a) Fully Automated Question Generation
generation_api(task='question-generation', context=context)
# b) Question Answering
question = "Bu model ne işe yarar?"
generation_api(task='question-answering', context=context, question=question)
# b) Answer Extraction
generation_api(task='answer-extraction', context=context)
- Downloads last month
- 5