Updated readme with FastConformer Hybrid De relevant information and results
#3
by
kunaldhawan
- opened
README.md
CHANGED
@@ -1,150 +1,116 @@
|
|
1 |
---
|
2 |
language:
|
3 |
-
-
|
4 |
library_name: nemo
|
5 |
datasets:
|
6 |
-
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
- WSJ-0
|
10 |
-
- WSJ-1
|
11 |
-
- National-Singapore-Corpus-Part-1
|
12 |
-
- National-Singapore-Corpus-Part-6
|
13 |
-
- vctk
|
14 |
-
- VoxPopuli-(EN)
|
15 |
-
- Europarl-ASR-(EN)
|
16 |
-
- Multilingual-LibriSpeech-(2000-hours)
|
17 |
-
- mozilla-foundation/common_voice_8_0
|
18 |
-
- MLCommons/peoples_speech
|
19 |
thumbnail: null
|
20 |
tags:
|
21 |
- automatic-speech-recognition
|
22 |
- speech
|
23 |
- audio
|
24 |
- Transducer
|
25 |
-
-
|
|
|
26 |
- Transformer
|
27 |
- pytorch
|
28 |
- NeMo
|
29 |
- hf-asr-leaderboard
|
30 |
license: cc-by-4.0
|
31 |
-
widget:
|
32 |
-
- example_title: Librispeech sample 1
|
33 |
-
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
34 |
-
- example_title: Librispeech sample 2
|
35 |
-
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
36 |
model-index:
|
37 |
-
- name:
|
38 |
results:
|
39 |
- task:
|
40 |
name: Automatic Speech Recognition
|
41 |
type: automatic-speech-recognition
|
42 |
dataset:
|
43 |
-
name:
|
44 |
-
type:
|
45 |
-
config:
|
46 |
split: test
|
47 |
args:
|
48 |
-
language:
|
49 |
metrics:
|
50 |
- name: Test WER
|
51 |
type: wer
|
52 |
-
value:
|
53 |
-
- task:
|
54 |
-
type: Automatic Speech Recognition
|
55 |
-
name: automatic-speech-recognition
|
56 |
-
dataset:
|
57 |
-
name: LibriSpeech (other)
|
58 |
-
type: librispeech_asr
|
59 |
-
config: other
|
60 |
-
split: test
|
61 |
-
args:
|
62 |
-
language: en
|
63 |
-
metrics:
|
64 |
-
- name: Test WER
|
65 |
-
type: wer
|
66 |
-
value: 3.01
|
67 |
- task:
|
68 |
type: Automatic Speech Recognition
|
69 |
name: automatic-speech-recognition
|
70 |
dataset:
|
71 |
name: Multilingual LibriSpeech
|
72 |
type: facebook/multilingual_librispeech
|
73 |
-
config:
|
74 |
split: test
|
75 |
args:
|
76 |
-
language:
|
77 |
metrics:
|
78 |
- name: Test WER
|
79 |
type: wer
|
80 |
-
value:
|
81 |
- task:
|
82 |
type: Automatic Speech Recognition
|
83 |
name: automatic-speech-recognition
|
84 |
dataset:
|
85 |
-
name:
|
86 |
-
type:
|
87 |
-
config:
|
88 |
split: test
|
89 |
args:
|
90 |
-
language:
|
91 |
metrics:
|
92 |
- name: Test WER
|
93 |
type: wer
|
94 |
-
value:
|
95 |
- task:
|
96 |
-
|
97 |
-
|
98 |
dataset:
|
99 |
-
name:
|
100 |
-
type: mozilla-foundation/
|
101 |
-
config:
|
102 |
split: test
|
103 |
args:
|
104 |
-
language:
|
105 |
metrics:
|
106 |
-
- name: Test WER
|
107 |
type: wer
|
108 |
-
value:
|
109 |
- task:
|
110 |
type: Automatic Speech Recognition
|
111 |
name: automatic-speech-recognition
|
112 |
dataset:
|
113 |
-
name:
|
114 |
-
type:
|
115 |
-
|
116 |
-
|
117 |
-
metrics:
|
118 |
-
- name: Test WER
|
119 |
-
type: wer
|
120 |
-
value: 1.17
|
121 |
-
- task:
|
122 |
-
type: Automatic Speech Recognition
|
123 |
-
name: automatic-speech-recognition
|
124 |
-
dataset:
|
125 |
-
name: Wall Street Journal 93
|
126 |
-
type: wsj_1
|
127 |
args:
|
128 |
-
language:
|
129 |
metrics:
|
130 |
-
- name: Test WER
|
131 |
type: wer
|
132 |
-
value:
|
133 |
- task:
|
134 |
type: Automatic Speech Recognition
|
135 |
name: automatic-speech-recognition
|
136 |
dataset:
|
137 |
-
name:
|
138 |
-
type:
|
|
|
|
|
139 |
args:
|
140 |
-
language:
|
141 |
metrics:
|
142 |
-
- name: Test WER
|
143 |
type: wer
|
144 |
-
value:
|
|
|
|
|
145 |
---
|
146 |
|
147 |
-
# NVIDIA
|
148 |
|
149 |
<style>
|
150 |
img {
|
@@ -152,24 +118,20 @@ img {
|
|
152 |
}
|
153 |
</style>
|
154 |
|
155 |
-
| [![Model architecture](https://img.shields.io/badge/Model_Arch-
|
156 |
-
| [![Model size](https://img.shields.io/badge/Params-
|
157 |
-
| [![Language](https://img.shields.io/badge/Language-
|
158 |
|
159 |
|
160 |
-
This model transcribes speech in lower case
|
161 |
-
It is
|
162 |
-
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#conformer
|
163 |
|
164 |
## NVIDIA NeMo: Training
|
165 |
|
166 |
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
|
167 |
```
|
168 |
pip install nemo_toolkit['all']
|
169 |
-
'''
|
170 |
-
'''
|
171 |
-
(if it causes an error):
|
172 |
-
pip install nemo_toolkit[all]
|
173 |
```
|
174 |
|
175 |
## How to Use this Model
|
@@ -180,7 +142,7 @@ The model is available for use in the NeMo toolkit [3], and can be used as a pre
|
|
180 |
|
181 |
```python
|
182 |
import nemo.collections.asr as nemo_asr
|
183 |
-
asr_model = nemo_asr.models.
|
184 |
```
|
185 |
|
186 |
### Transcribing using Python
|
@@ -195,12 +157,21 @@ asr_model.transcribe(['2086-149220-0033.wav'])
|
|
195 |
|
196 |
### Transcribing many audio files
|
197 |
|
|
|
198 |
```shell
|
199 |
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
200 |
-
pretrained_name="nvidia/
|
201 |
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
|
202 |
```
|
203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
### Input
|
205 |
|
206 |
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
|
@@ -211,42 +182,43 @@ This model provides transcribed speech as a string for a given audio sample.
|
|
211 |
|
212 |
## Model Architecture
|
213 |
|
214 |
-
|
215 |
|
216 |
## Training
|
217 |
|
218 |
-
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/
|
219 |
|
220 |
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
|
221 |
|
222 |
### Datasets
|
223 |
|
224 |
-
All the models in this collection are trained on a composite dataset (NeMo ASRSET) comprising of
|
225 |
|
226 |
-
-
|
227 |
-
-
|
228 |
-
-
|
229 |
-
- WSJ-0 and WSJ-1
|
230 |
-
- National Speech Corpus (Part 1, Part 6)
|
231 |
-
- VCTK
|
232 |
-
- VoxPopuli (EN)
|
233 |
-
- Europarl-ASR (EN)
|
234 |
-
- Multilingual Librispeech (MLS EN) - 2,000 hrs subset
|
235 |
-
- Mozilla Common Voice (v8.0)
|
236 |
-
- People's Speech - 12,000 hrs subset
|
237 |
-
|
238 |
-
Note: older versions of the model may have trained on smaller set of datasets.
|
239 |
|
240 |
## Performance
|
241 |
|
242 |
-
The
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
| Version | Tokenizer | Vocabulary Size | LS test-other | LS test-clean | WSJ Eval92 | WSJ Dev93 | NSC Part 1 | MLS Test | MLS Dev | MCV Test 8.0 | Train Dataset |
|
245 |
-
|---------|-----------------------|-----------------|---------------|---------------|------------|-----------|-----|-------|------|----|------|
|
246 |
-
| 1.10.0 | SentencePiece Unigram | 1024 | 3.01 | 1.62 | 1.17 | 2.05 | 5.70 | 5.32 | 4.59 | 6.46 | NeMo ASRSET 3.0 |
|
247 |
|
248 |
## Limitations
|
249 |
-
Since this model was trained on
|
250 |
|
251 |
## NVIDIA Riva: Deployment
|
252 |
|
@@ -267,4 +239,4 @@ Check out [Riva live demo](https://developer.nvidia.com/riva#demos).
|
|
267 |
|
268 |
## Licence
|
269 |
|
270 |
-
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
|
|
|
1 |
---
|
2 |
language:
|
3 |
+
- de
|
4 |
library_name: nemo
|
5 |
datasets:
|
6 |
+
- multilingual_librispeech
|
7 |
+
- mozilla-foundation/common_voice_12_0
|
8 |
+
- VoxPopuli-(DE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
thumbnail: null
|
10 |
tags:
|
11 |
- automatic-speech-recognition
|
12 |
- speech
|
13 |
- audio
|
14 |
- Transducer
|
15 |
+
- FastConformer
|
16 |
+
- CTC
|
17 |
- Transformer
|
18 |
- pytorch
|
19 |
- NeMo
|
20 |
- hf-asr-leaderboard
|
21 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
22 |
model-index:
|
23 |
+
- name: stt_de_fastconformer_hybrid_large_pc
|
24 |
results:
|
25 |
- task:
|
26 |
name: Automatic Speech Recognition
|
27 |
type: automatic-speech-recognition
|
28 |
dataset:
|
29 |
+
name: common-voice-12-0
|
30 |
+
type: mozilla-foundation/common_voice_12_0
|
31 |
+
config: de
|
32 |
split: test
|
33 |
args:
|
34 |
+
language: de
|
35 |
metrics:
|
36 |
- name: Test WER
|
37 |
type: wer
|
38 |
+
value: 4.93
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
- task:
|
40 |
type: Automatic Speech Recognition
|
41 |
name: automatic-speech-recognition
|
42 |
dataset:
|
43 |
name: Multilingual LibriSpeech
|
44 |
type: facebook/multilingual_librispeech
|
45 |
+
config: german
|
46 |
split: test
|
47 |
args:
|
48 |
+
language: de
|
49 |
metrics:
|
50 |
- name: Test WER
|
51 |
type: wer
|
52 |
+
value: 3.8
|
53 |
- task:
|
54 |
type: Automatic Speech Recognition
|
55 |
name: automatic-speech-recognition
|
56 |
dataset:
|
57 |
+
name: Vox Populi
|
58 |
+
type: polinaeterna/voxpopuli
|
59 |
+
config: german
|
60 |
split: test
|
61 |
args:
|
62 |
+
language: de
|
63 |
metrics:
|
64 |
- name: Test WER
|
65 |
type: wer
|
66 |
+
value: 8.6
|
67 |
- task:
|
68 |
+
name: Automatic Speech Recognition
|
69 |
+
type: automatic-speech-recognition
|
70 |
dataset:
|
71 |
+
name: common-voice-12-0
|
72 |
+
type: mozilla-foundation/common_voice_12_0
|
73 |
+
config: German P&C
|
74 |
split: test
|
75 |
args:
|
76 |
+
language: de
|
77 |
metrics:
|
78 |
+
- name: Test WER P&C
|
79 |
type: wer
|
80 |
+
value: 5.39
|
81 |
- task:
|
82 |
type: Automatic Speech Recognition
|
83 |
name: automatic-speech-recognition
|
84 |
dataset:
|
85 |
+
name: Multilingual LibriSpeech
|
86 |
+
type: facebook/multilingual_librispeech
|
87 |
+
config: German P&C
|
88 |
+
split: test
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
args:
|
90 |
+
language: de
|
91 |
metrics:
|
92 |
+
- name: Test WER P&C
|
93 |
type: wer
|
94 |
+
value: 11.1
|
95 |
- task:
|
96 |
type: Automatic Speech Recognition
|
97 |
name: automatic-speech-recognition
|
98 |
dataset:
|
99 |
+
name: Vox Populi
|
100 |
+
type: polinaeterna/voxpopuli
|
101 |
+
config: German P&C
|
102 |
+
split: test
|
103 |
args:
|
104 |
+
language: de
|
105 |
metrics:
|
106 |
+
- name: Test WER P&C
|
107 |
type: wer
|
108 |
+
value: 10.41
|
109 |
+
metrics:
|
110 |
+
- wer
|
111 |
---
|
112 |
|
113 |
+
# NVIDIA FastConformer-Hybrid Large (de)
|
114 |
|
115 |
<style>
|
116 |
img {
|
|
|
118 |
}
|
119 |
</style>
|
120 |
|
121 |
+
| [![Model architecture](https://img.shields.io/badge/Model_Arch-FastConformer--Transducer_CTC-lightgrey#model-badge)](#model-architecture)
|
122 |
+
| [![Model size](https://img.shields.io/badge/Params-115M-lightgrey#model-badge)](#model-architecture)
|
123 |
+
| [![Language](https://img.shields.io/badge/Language-de-lightgrey#model-badge)](#datasets)
|
124 |
|
125 |
|
126 |
+
This model transcribes speech in upper and lower case German alphabet along with spaces, periods, commas, and question marks.
|
127 |
+
It is a "large" version of FastConformer Transducer-CTC (around 115M parameters) model.
|
128 |
+
See the [model architecture](#model-architecture) section and [NeMo documentation](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) for complete architecture details.
|
129 |
|
130 |
## NVIDIA NeMo: Training
|
131 |
|
132 |
To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
|
133 |
```
|
134 |
pip install nemo_toolkit['all']
|
|
|
|
|
|
|
|
|
135 |
```
|
136 |
|
137 |
## How to Use this Model
|
|
|
142 |
|
143 |
```python
|
144 |
import nemo.collections.asr as nemo_asr
|
145 |
+
asr_model = nemo_asr.models.EncDecHybridRNNTCTCBPEModel.from_pretrained(model_name="nvidia/stt_de_fastconformer_hybrid_large_pc")
|
146 |
```
|
147 |
|
148 |
### Transcribing using Python
|
|
|
157 |
|
158 |
### Transcribing many audio files
|
159 |
|
160 |
+
Using Transducer mode inference:
|
161 |
```shell
|
162 |
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
163 |
+
pretrained_name="nvidia/stt_de_fastconformer_hybrid_large_pc"
|
164 |
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
|
165 |
```
|
166 |
|
167 |
+
Using CTC mode inference:
|
168 |
+
```shell
|
169 |
+
python [NEMO_GIT_FOLDER]/examples/asr/transcribe_speech.py
|
170 |
+
pretrained_name="nvidia/stt_de_fastconformer_hybrid_large_pc"
|
171 |
+
audio_dir="<DIRECTORY CONTAINING AUDIO FILES>"
|
172 |
+
decoder_type="ctc"
|
173 |
+
```
|
174 |
+
|
175 |
### Input
|
176 |
|
177 |
This model accepts 16000 KHz Mono-channel Audio (wav files) as input.
|
|
|
182 |
|
183 |
## Model Architecture
|
184 |
|
185 |
+
FastConformer is an optimized version of the Conformer model [1] with 8x depthwise-separable convolutional downsampling. The model is trained in a multitask setup with joint Transducer and CTC decoder loss. You may find more information on the details of FastConformer here: [Fast-Conformer Model](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#fast-conformer) and about Hybrid Transducer-CTC training here: [Hybrid Transducer-CTC](https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/asr/models.html#hybrid-transducer-ctc).
|
186 |
|
187 |
## Training
|
188 |
|
189 |
+
The NeMo toolkit [3] was used for training the models for over several hundred epochs. These model are trained with this [example script](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/asr_hybrid_transducer_ctc/speech_to_text_hybrid_rnnt_ctc_bpe.py) and this [base config](https://github.com/NVIDIA/NeMo/blob/main/examples/asr/conf/fastconformer/hybrid_transducer_ctc/fastconformer_hybrid_transducer_ctc_bpe.yaml).
|
190 |
|
191 |
The tokenizers for these models were built using the text transcripts of the train set with this [script](https://github.com/NVIDIA/NeMo/blob/main/scripts/tokenizers/process_asr_text_tokenizer.py).
|
192 |
|
193 |
### Datasets
|
194 |
|
195 |
+
All the models in this collection are trained on a composite dataset (NeMo PnC ASRSET) comprising of 2500 hours of German speech:
|
196 |
|
197 |
+
- MCV12 (800 hrs)
|
198 |
+
- MLS (1500 hrs)
|
199 |
+
- Voxpopuli (200 hrs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
## Performance
|
202 |
|
203 |
+
The performance of Automatic Speech Recognition models is measuring using Word Error Rate. Since this dataset is trained on multiple domains and a much larger corpus, it will generally perform better at transcribing audio in general.
|
204 |
+
|
205 |
+
The following tables summarizes the performance of the available models in this collection with the Transducer decoder. Performances of the ASR models are reported in terms of Word Error Rate (WER%) with greedy decoding.
|
206 |
+
|
207 |
+
|
208 |
+
a) On data without Punctuation and Capitalization with Transducer decoder
|
209 |
+
| **Version** | **Tokenizer** | **Vocabulary Size** | **MCV12 DEV** | **MCV12 TEST** | **MLS DEV** | **MLS TEST** | **VOXPOPULI DEV** | **VOXPOPULI TEST** |
|
210 |
+
|:-----------:|:---------------------:|:-------------------:|:-------------:|:--------------:|:-----------:|:------------:|:-----------------:|:------------------:|
|
211 |
+
| 1.18.0 | SentencePiece Unigram | 1024 | 4.18 | 4.93 | 3.3 | 3.8 | 10.8 | 8.6 |
|
212 |
+
|
213 |
+
|
214 |
+
b) On data with Punctuation and Capitalization with Transducer decoder
|
215 |
+
| **Version** | **Tokenizer** | **Vocabulary Size** | **MCV12 DEV** | **MCV12 TEST** | **MLS DEV** | **MLS TEST** | **VOXPOPULI DEV** | **VOXPOPULI TEST** |
|
216 |
+
|:-----------:|:---------------------:|:-------------------:|:-------------:|:--------------:|:-----------:|:------------:|:-----------------:|:------------------:|
|
217 |
+
| 1.18.0 | SentencePiece Unigram | 1024 | 4.66 | 5.39 | 10.12 | 11.1 | 12.96 | 10.41 |
|
218 |
|
|
|
|
|
|
|
219 |
|
220 |
## Limitations
|
221 |
+
Since this model was trained on publically available speech datasets, the performance of this model might degrade for speech which includes technical terms, or vernacular that the model has not been trained on. The model might also perform worse for accented speech. The model only outputs the punctuations: ```'.', ',', '?' ``` and hence might not do well in scenarios where other punctuations are also expected.
|
222 |
|
223 |
## NVIDIA Riva: Deployment
|
224 |
|
|
|
239 |
|
240 |
## Licence
|
241 |
|
242 |
+
License to use this model is covered by the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/). By downloading the public and release version of the model, you accept the terms and conditions of the [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/) license.
|