zihanliu's picture
Update README.md
1f2bc46 verified
|
raw
history blame
5.44 kB
metadata
license: llama3
language:
  - en
pipeline_tag: text-generation
tags:
  - nvidia
  - chatqa-1.5
  - chatqa
  - llama-3
  - pytorch

Model Details

We release ChatQA1.5, which excels at RAG-based conversational question answering (QA). ChatQA-1.5 is built using the training recipe from ChatQA (1.0), and it is built on top of Llama-3 foundation model. Additionally, we incorporate more conversational QA data to enhance its tabular and arithmatic calculation capability. ChatQA-1.5 has two variants: ChatQA-1.5-8B and ChatQA-1.5-70B.

Benchmark Results

Results in ConvRAG Bench are as follows:

ChatQA-1.0-7B Command-R-Plus Llama-3-instruct-70b GPT-4-0613 ChatQA-1.0-70B ChatQA-1.5-8B ChatQA-1.5-70B
Doc2Dial 37.88 33.51 37.88 34.16 38.9 39.33 41.26
QuAC 29.69 34.16 36.96 40.29 41.82 39.73 38.82
QReCC 46.97 49.77 51.34 52.01 48.05 49.03 51.40
CoQA 76.61 69.71 76.98 77.42 78.57 76.46 78.44
DoQA 41.57 40.67 41.24 43.39 51.94 49.6 50.67
ConvFinQA 51.61 71.21 76.6 81.28 73.69 78.46 81.88
SQA 61.87 74.07 69.61 79.21 69.14 73.28 83.82
TopioCQA 45.45 53.77 49.72 45.09 50.98 49.96 55.63
HybriDial* 54.51 46.7 48.59 49.81 56.44 65.76 68.27
INSCIT 30.96 35.76 36.23 36.34 31.9 30.1 32.31
Average (all) 47.71 50.93 52.52 53.90 54.14 55.17 58.25
Average (exclude HybriDial) 46.96 51.40 52.95 54.35 53.89 53.99 57.14

Note that ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial. The data and evaluation scripts for ConvRAG can be found here.

Prompt Format

System: {System}

{Context}

User: {Question}

Assistant: {Response}

User: {Question}

Assistant:

How to use

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "nvidia/ChatQA-1.5-8B"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")

messages = [
    {"role": "user", "content": "what is the percentage change of the net income from Q4 FY23 to Q4 FY24?"}
]

context = """NVIDIA (NASDAQ: NVDA) today reported revenue for the fourth quarter ended January 28, 2024, of $22.1 billion, up 22% from the previous quarter and up 265% from a year ago.\nFor the quarter, GAAP earnings per diluted share was $4.93, up 33% from the previous quarter and up 765% from a year ago. Non-GAAP earnings per diluted share was $5.16, up 28% from the previous quarter and up 486% from a year ago.\nQ4 Fiscal 2024 Summary\nGAAP\n| $ in millions, except earnings per share | Q4 FY24 | Q3 FY24 | Q4 FY23 | Q/Q | Y/Y |\n| Revenue | $22,103 | $18,120 | $6,051 | Up 22% | Up 265% |\n| Gross margin | 76.0% | 74.0% | 63.3% | Up 2.0 pts | Up 12.7 pts |\n| Operating expenses | $3,176 | $2,983 | $2,576 | Up 6% | Up 23% |\n| Operating income | $13,615 | $10,417 | $1,257 | Up 31% | Up 983% |\n| Net income | $12,285 | $9,243 | $1,414 | Up 33% | Up 769% |\n| Diluted earnings per share | $4.93 | $3.71 | $0.57 | Up 33% | Up 765% |"""

def get_formatted_input(messages, context):
    system = "System: This is a chat between a user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions based on the context. The assistant should also indicate when the answer cannot be found in the context."
    instruction = "Please give a full and complete answer for the question."

    for item in messages:
        if item['role'] == "user":
            ## only apply this instruction for the first user turn
            item['content'] = instruction + " " + item['content']
            break

    conversation = ""
    for item in messages:
        if item["role"] == "user":
            conversation += "User: " + item["content"] + "\n\n"
        else:
            conversation += "Assistant: " + item["content"] + "\n\n"
    conversation += "Assistant:"

    formatted_input = system + "\n\n" + context + "\n\n" + conversation
    return formatted_input

formatted_input = get_formatted_input(messages, context)
tokenized_prompt = tokenizer(tokenizer.bos_token + formatted_input, return_tensors="pt").to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(input_ids=tokenized_prompt.input_ids, attention_mask=tokenized_prompt.attention_mask, max_new_tokens=128, eos_token_id=terminators)

response = outputs[0][tokenized_prompt.input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Correspondence to

Zihan Liu (zihanl@nvidia.com), Wei Ping (wping@nvidia.com)

Citation

@article{liu2024chatqa,
  title={ChatQA: Building GPT-4 Level Conversational QA Models},
  author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
  journal={arXiv preprint arXiv:2401.10225},
  year={2024}}

License

The use of this model is governed by the META LLAMA 3 COMMUNITY LICENSE AGREEMENT