File size: 1,029 Bytes
dba8d15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
from transformers import PreTrainedModel
from .MyConfig import MnistConfig
from torch import nn
import torch.nn.functional as F
class MnistModel(PreTrainedModel):
config_class = MnistConfig
def __init__(self, config):
super().__init__(config)
# use the config to instantiate our model
self.conv1 = nn.Conv2d(1, config.conv1, kernel_size=5)
self.conv2 = nn.Conv2d(config.conv1, config.conv2, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x,labels=None):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
output = self.softmax(x)
if labels != None :
print("continue training script here")
return output
|