Edit model card

layoutlmv3-final-v1

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0822
  • Precision: 0.9789
  • Recall: 0.9839
  • F1: 0.9814
  • Accuracy: 0.9852

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.56 100 1.7056 0.4839 0.5464 0.5133 0.6494
No log 5.13 200 0.4856 0.8255 0.8821 0.8528 0.9217
No log 7.69 300 0.2319 0.9027 0.9355 0.9188 0.9575
No log 10.26 400 0.1437 0.9652 0.9778 0.9715 0.9800
0.9248 12.82 500 0.1204 0.967 0.9748 0.9709 0.9770
0.9248 15.38 600 0.1025 0.9711 0.9808 0.9759 0.9790
0.9248 17.95 700 0.0971 0.9789 0.9829 0.9809 0.9826
0.9248 20.51 800 0.0885 0.9819 0.9849 0.9834 0.9846
0.9248 23.08 900 0.0858 0.9789 0.9839 0.9814 0.9857
0.0697 25.64 1000 0.0822 0.9789 0.9839 0.9814 0.9852

Framework versions

  • Transformers 4.30.0.dev0
  • Pytorch 1.8.0+cu101
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.