File size: 2,431 Bytes
c498d68 f76ff08 c498d68 f76ff08 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
language:
- en
library_name: peft
pipeline_tag: text-generation
tags:
- medical
license: cc-by-nc-4.0
---
# MedFalcon v2 40b LoRA - Final
![img.png](img.png)
## Model Description
This a model release at `1 epoch`. For evaluation use only! Limitations:
* Do not use to treat paitients! Treat AI content as if you wrote it!!!
### Architecture
`nmitchko/medfalcon-v2-40b-lora` is a large language model LoRa specifically fine-tuned for medical domain tasks.
It is based on [`Falcon-40b`](https://huggingface.co/tiiuae/falcon-40b) at 40 billion parameters.
The primary goal of this model is to improve question-answering and medical dialogue tasks.
It was trained using [LoRA](https://arxiv.org/abs/2106.09685), specifically [QLora](https://github.com/artidoro/qlora), to reduce memory footprint.
See Training Parameters for more info This Lora supports 4-bit and 8-bit modes.
### Requirements
```
bitsandbytes>=0.39.0
peft
transformers
```
Steps to load this model:
1. Load base model using transformers
2. Apply LoRA using peft
```python
#
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
from peft import PeftModel
model = "tiiuae/falcon-40b"
LoRA = "nmitchko/medfalcon-v2-40b-lora"
# If you want 8 or 4 bit set the appropriate flags
load_8bit = True
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, LoRA)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
)
sequences = pipeline(
"What does the drug ceftrioxone do?\nDoctor:",
max_length=200,
do_sample=True,
top_k=40,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
)
for seq in sequences:
print(f"Result: {seq['generated_text']}")
```
## Training Parameters
The model was trained for or 1 epoch on a custom, unreleased dataset named `medconcat`.
`medconcat` contains only human generated content and weighs in at over 100MiB of raw text.
| Item | Amount | Units |
|---------------|--------|-------|
| LoRA Rank | 64 | ~ |
| LoRA Alpha | 16 | ~ |
| Learning Rate | 1e-4 | SI |
| Dropout | 5 | % |
|