File size: 3,441 Bytes
db25206
 
 
 
 
 
 
 
 
 
 
 
005d074
db25206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ae560
857ba1a
db25206
 
857ba1a
db25206
857ba1a
 
b5e4f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
db25206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
inference: false
model_type: llama
prompt_template: |
  <|im_start|>user\n
  {prompt}<|im_end|>\n
  <|im_start|>assistant\n
quantized_by: mwitiderrick
tags:
- deepsparse
---
## TinyLlama 1.1B Chat 1.0 - DeepSparse
This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.

This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).

## Inference
Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: 
```bash
pip install deepsparse-nightly[llm]
```
Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
```python
from deepsparse import TextGeneration

prompt = "How to make banana bread?"
formatted_prompt =  f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"

model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds")
print(model(formatted_prompt, max_new_tokens=200).generations[0].text)

"""
Sure, here's a recipe for making banana bread:

Ingredients:
- 1 cup of all-purpose flour
- 1 cup of unsalted butter
- 1 cup of unsalted sugar
- 1 cup of mashed bananas
- 1 cup of milk
- 1/2 cup of egg whites
- 1/4 cup of melted butter

Instructions:
1. Preheat oven to 375°F (150°C).
2. In a large mixing bowl, combine flour, sugar, mashed bananas, milk, egg whites, and butter. Mix well.
3. Add melted butter and mix again.
4. Add melted sugar and mix again.
5. Add melted milk and mix again.
6. Add egg whites and mix

"""
```
## Prompt template

```
<|im_start|>user\n
{prompt}<|im_end|>\n
<|im_start|>assistant\n

```
## Sparsification
For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.

```bash
git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float16  --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment 
cp deployment/model.onnx deployment/model-orig.onnx
```
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
```python
import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")
```
Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. 
## Slack

For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)