File size: 3,466 Bytes
db25206
 
 
 
 
 
 
 
 
 
 
 
005d074
db25206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ae560
857ba1a
db25206
 
857ba1a
db25206
857ba1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db25206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
inference: false
model_type: llama
prompt_template: |
  <|im_start|>user\n
  {prompt}<|im_end|>\n
  <|im_start|>assistant\n
quantized_by: mwitiderrick
tags:
- deepsparse
---
## TinyLlama 1.1B Chat 1.0 - DeepSparse
This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.

This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).

## Inference
Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: 
```bash
pip install deepsparse-nightly[llm]
```
Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
```python
from deepsparse import TextGeneration

prompt = "How to make banana bread?"
formatted_prompt =  f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"

model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds")
print(model(formatted_prompt, max_new_tokens=200).generations[0].text)

"""
Sure, here's a recipe for making banana bread:

Ingredients:
- 1 cup of all-purpose flour
- 1 cup of instant potatoes
- 1 cup of unsalted instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 1/2 cup of instant potatoes
- 

"""
```
## Prompt template

```
<|im_start|>user\n
{prompt}<|im_end|>\n
<|im_start|>assistant\n

```
## Sparsification
For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.

```bash
git clone https://github.com/neuralmagic/sparseml
pip install -e "sparseml[transformers]"
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float16  --recipe recipe.yaml --save True
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment 
cp deployment/model.onnx deployment/model-orig.onnx
```
Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
```python
import os
import onnx
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
input_file = "deployment/model-orig.onnx"
output_file = "deployment/model.onnx"
model = onnx.load(input_file, load_external_data=False)
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
onnx.save(model, output_file)
print(f"Modified model saved to: {output_file}")
```
Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. 
## Slack

For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)