File size: 2,407 Bytes
2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f 2634b8b a78e03f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
datasets:
- HuggingFaceH4/ultrachat_200k
language:
- en
pipeline_tag: text-generation
---
# SparseLlama-2-7b-ultrachat_200k-pruned_70
## Model Overview
- **Model Architecture:** Llama-2
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Pruned:** 70%
- **Release Date:** 6/28/2024
- **Version:** 1.0
- **Model Developers:** Neural Magic
Compressed version of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) specialized for text-generation.
This model was obtained by fine-tuning the Sparse Foundational model [Sparse-Llama-2-7b-pruned_70](https://huggingface.co/nm-testing/SparseLlama-2-7b-pruned_70) on the [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k) dataset.
It achieves a win rate of 59.8% on the [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) benchmark (version 1.0) when using [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) as evaluator, whereas the dense [Llama-2-7b-ultrachat200k](https://huggingface.co/neuralmagic/Llama-2-7b-ultrachat200k) model achieves 57.6% win rate.
This model was produced as part if Neural Magic's Sparse Foundational Models initiative, and demostrates the capability of Sparse Foundational Models to transfer to the text-generation domain.
**Note:** This model uses the chat template from [zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta).
## Model Optimizations
This model is derived from the Sparse Foundational model [Sparse-Llama-2-7b-pruned_70](https://huggingface.co/nm-testing/SparseLlama-2-7b-pruned_70), which was obtained by applying the [SparseGPT](https://arxiv.org/abs/2301.00774) algorithm to prune [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) to 70% sparsity.
This optimization reduces the number of parameters by 70%, reducing the disk size and FLOPs by the same level.
## Evaluation
This model was evaluated in the [AlpacaEval](https://github.com/tatsu-lab/alpaca_eval) benchmark using [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) as evaluator.
## Accuracy
| Model | Win rate | Recovery |
| :----- | :--------: | :--------: |
| [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) | 3.7% | -- |
| [Llama-2-7b-ultrachat200k](https://huggingface.co/neuralmagic/Llama-2-7b-ultrachat200k) | 57.6% | -- |
| SparseLlama-2-7b-ultrachat_200k-pruned_70 | 59.8% | 104% | |