m0_flat_ner_ocr_ptrn_cmbert_io
Introduction
This model is a fine-tuned verion from HueyNemud/das22-10-camembert_pretrained for nested NER task on a nested NER Paris trade directories dataset.
Dataset
Abbreviation | Description |
---|---|
O | Outside of a named entity |
PER | Person or company name |
ACT | Person or company professional activity |
TITRE | Distinction |
LOC | Street name |
CARDINAL | Street number |
FT | Geographical feature |
Experiment parameter
- Pretrained-model : HueyNemud/das22-10-camembert_pretrained
- Dataset : noisy (Pero OCR)
- Tagging format : IO
- Recognised entities : All (flat entities)
Load model from the HuggingFace
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("nlpso/m0_flat_ner_ocr_ptrn_cmbert_io")
model = AutoModelForTokenClassification.from_pretrained("nlpso/m0_flat_ner_ocr_ptrn_cmbert_io")
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.