Create handler.py
#7
by
CarlLee
- opened
- handler.py +67 -0
handler.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
import base64
|
7 |
+
from base64 import b64encode
|
8 |
+
import requests
|
9 |
+
import json
|
10 |
+
import io
|
11 |
+
|
12 |
+
# Take in base64 string and return cv image
|
13 |
+
def stringToRGB(base64_string):
|
14 |
+
imgdata = base64.b64decode(str(base64_string))
|
15 |
+
img = Image.open(io.BytesIO(imgdata)).convert('RGB')
|
16 |
+
# opencv_img= cv2.cvtColor(np.array(img), cv2.COLOR_BGR2RGB)
|
17 |
+
return img
|
18 |
+
|
19 |
+
|
20 |
+
def predict_caption(image_str, max_token = 32):
|
21 |
+
|
22 |
+
num_beams = 4
|
23 |
+
gen_kwargs = {"max_length": max_token, "num_beams": num_beams}
|
24 |
+
|
25 |
+
images = []
|
26 |
+
image = stringToRGB(image_str)
|
27 |
+
images.append(image)
|
28 |
+
|
29 |
+
pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values
|
30 |
+
pixel_values = pixel_values.to(device)
|
31 |
+
|
32 |
+
output_ids = model.generate(pixel_values, **gen_kwargs)
|
33 |
+
|
34 |
+
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
35 |
+
preds = [pred.strip() for pred in preds]
|
36 |
+
return preds[0]
|
37 |
+
|
38 |
+
|
39 |
+
class EndpointHandler():
|
40 |
+
def __init__(self, path=""):
|
41 |
+
# Preload all the elements you are going to need at inference.
|
42 |
+
# pseudo:
|
43 |
+
# self.model= load_model(path
|
44 |
+
model = VisionEncoderDecoderModel.from_pretrained(path)
|
45 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained(path)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(path)
|
47 |
+
|
48 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
+
model = model.to(device)
|
50 |
+
|
51 |
+
|
52 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
53 |
+
"""
|
54 |
+
data args:
|
55 |
+
inputs (:obj: `str` | `PIL.Image` | `np.array`)
|
56 |
+
kwargs
|
57 |
+
Return:
|
58 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
59 |
+
"""
|
60 |
+
max_token = data.pop("max_token", 32)
|
61 |
+
img_str = data.pop("data", None)
|
62 |
+
|
63 |
+
caption = predict_caption(img_str, max_token=max_token)
|
64 |
+
return {"caption": f"{caption}"}
|
65 |
+
|
66 |
+
# pseudo
|
67 |
+
# self.model(input)
|