File size: 2,310 Bytes
1aa1aa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: korean_sentiment_analysis_dataset3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# korean_sentiment_analysis_dataset3
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7614
- Micro f1 score: 74.9024
- Auprc: 75.3897
- Accuracy: 0.7490
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Micro f1 score | Auprc | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------------:|:-------:|:--------:|
| 0.8814 | 1.0 | 5080 | 0.7160 | 74.0798 | 78.1155 | 0.7408 |
| 0.5153 | 2.0 | 10160 | 0.6638 | 76.1573 | 80.2492 | 0.7616 |
| 0.6463 | 3.0 | 15240 | 0.6815 | 76.2897 | 80.6829 | 0.7629 |
| 0.4697 | 4.0 | 20320 | 0.7243 | 76.0666 | 80.1682 | 0.7607 |
| 0.2043 | 5.0 | 25400 | 0.9200 | 75.4810 | 79.2632 | 0.7548 |
| 0.2452 | 6.0 | 30480 | 1.0875 | 74.9582 | 78.5166 | 0.7496 |
| 0.1481 | 7.0 | 35560 | 1.3625 | 74.7769 | 76.5613 | 0.7478 |
| 0.1974 | 8.0 | 40640 | 1.5593 | 75.0906 | 76.3100 | 0.7509 |
| 0.1658 | 9.0 | 45720 | 1.6836 | 74.9651 | 75.6953 | 0.7497 |
| 0.1392 | 10.0 | 50800 | 1.7614 | 74.9024 | 75.3897 | 0.7490 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.6.0
- Datasets 2.7.1
- Tokenizers 0.13.2
|