YeRyeongLee commited on
Commit
1aa1aa6
·
1 Parent(s): f982edd

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: korean_sentiment_analysis_dataset3
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # korean_sentiment_analysis_dataset3
15
+
16
+ This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.7614
19
+ - Micro f1 score: 74.9024
20
+ - Auprc: 75.3897
21
+ - Accuracy: 0.7490
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 1e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.1
47
+ - num_epochs: 10.0
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Micro f1 score | Auprc | Accuracy |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:--------------:|:-------:|:--------:|
53
+ | 0.8814 | 1.0 | 5080 | 0.7160 | 74.0798 | 78.1155 | 0.7408 |
54
+ | 0.5153 | 2.0 | 10160 | 0.6638 | 76.1573 | 80.2492 | 0.7616 |
55
+ | 0.6463 | 3.0 | 15240 | 0.6815 | 76.2897 | 80.6829 | 0.7629 |
56
+ | 0.4697 | 4.0 | 20320 | 0.7243 | 76.0666 | 80.1682 | 0.7607 |
57
+ | 0.2043 | 5.0 | 25400 | 0.9200 | 75.4810 | 79.2632 | 0.7548 |
58
+ | 0.2452 | 6.0 | 30480 | 1.0875 | 74.9582 | 78.5166 | 0.7496 |
59
+ | 0.1481 | 7.0 | 35560 | 1.3625 | 74.7769 | 76.5613 | 0.7478 |
60
+ | 0.1974 | 8.0 | 40640 | 1.5593 | 75.0906 | 76.3100 | 0.7509 |
61
+ | 0.1658 | 9.0 | 45720 | 1.6836 | 74.9651 | 75.6953 | 0.7497 |
62
+ | 0.1392 | 10.0 | 50800 | 1.7614 | 74.9024 | 75.3897 | 0.7490 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.25.1
68
+ - Pytorch 1.6.0
69
+ - Datasets 2.7.1
70
+ - Tokenizers 0.13.2