|
--- |
|
base_model: google/gemma-2-9b |
|
library_name: peft |
|
license: gemma |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lora-out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: google/gemma-2-9b |
|
|
|
sequence_len: 1024 |
|
|
|
# base model weight quantization |
|
load_in_8bit: true |
|
# load_in_4bit: true |
|
|
|
# attention implementation |
|
flash_attention: true |
|
|
|
# finetuned adapter config |
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 16 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral |
|
- embed_tokens |
|
- lm_head |
|
|
|
# if training fails, uncomment above |
|
# for details, see https://github.com/huggingface/peft/issues/334#issuecomment-1561727994 |
|
|
|
### |
|
# Dataset Configuration: sqlqa |
|
### |
|
# datasets: |
|
# - path: data.jsonl |
|
# type: alpaca |
|
|
|
datasets: |
|
- path: public_train_data.jsonl |
|
ds_type: json |
|
type: |
|
field_instruction: instruction |
|
field_input: input |
|
field_output: output |
|
format: |- |
|
[INST] {instruction} |
|
{input} [/INST] |
|
|
|
chat_template: gemma |
|
tokens: |
|
- "[INST]" |
|
- " [/INST]" |
|
- "[QL]" |
|
- " [/QL]" |
|
- "[EXPLANATION]" |
|
- " [/EXPLANATION]" |
|
# dataset formatting config |
|
|
|
special_tokens: |
|
pad_token: <|end_of_text|> |
|
|
|
val_set_size: 0.05 |
|
|
|
### |
|
# Training Configuration |
|
### |
|
|
|
# masks the input messages so that the model learns and understands the language w/o being reliant on the input |
|
train_on_inputs: false |
|
# random seed for better reproducibility |
|
seed: 117 |
|
|
|
# optimizer config |
|
optimizer: adamw_bnb_8bit |
|
learning_rate: 0.0001 |
|
lr_scheduler: cosine |
|
num_epochs: 4 |
|
micro_batch_size: 4 |
|
gradient_accumulation_steps: 1 |
|
warmup_steps: 10 |
|
|
|
# axolotl saving config |
|
dataset_prepared_path: last_run_prepared |
|
output_dir: ./lora-out |
|
|
|
# logging and eval config |
|
logging_steps: 1 |
|
eval_steps: 0.05 |
|
|
|
# training performance optimization config |
|
bf16: auto |
|
tf32: false |
|
gradient_checkpointing: true |
|
|
|
### |
|
# Miscellaneous Configuration |
|
### |
|
|
|
# when true, prevents over-writing the config from the CLI |
|
strict: false |
|
|
|
# "Don't mess with this, it's here for accelerate and torchrun" -- axolotl docs |
|
local_rank: |
|
|
|
# WANDB |
|
wandb_mode: |
|
wandb_project: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_run_id: |
|
|
|
# Multi-GPU |
|
# deepspeed: /root/axolotl/deepspeed_configs/zero3_bf16.json |
|
# deepspeed: zero3_bf16.json |
|
# deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json |
|
deepspeed: |
|
fsdp: |
|
fsdp_config: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# lora-out |
|
|
|
This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0077 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 117 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.7925 | 0.0385 | 1 | 2.0412 | |
|
| 1.6872 | 0.2308 | 6 | 1.6089 | |
|
| 0.6967 | 0.4615 | 12 | 0.6328 | |
|
| 0.3327 | 0.6923 | 18 | 0.2711 | |
|
| 0.1784 | 0.9231 | 24 | 0.1733 | |
|
| 0.1136 | 1.1538 | 30 | 0.1190 | |
|
| 0.0891 | 1.3846 | 36 | 0.0850 | |
|
| 0.0746 | 1.6154 | 42 | 0.0626 | |
|
| 0.0522 | 1.8462 | 48 | 0.0465 | |
|
| 0.033 | 2.0769 | 54 | 0.0282 | |
|
| 0.0333 | 2.3077 | 60 | 0.0225 | |
|
| 0.0171 | 2.5385 | 66 | 0.0203 | |
|
| 0.0172 | 2.7692 | 72 | 0.0144 | |
|
| 0.0095 | 3.0 | 78 | 0.0119 | |
|
| 0.0088 | 3.2308 | 84 | 0.0099 | |
|
| 0.0054 | 3.4615 | 90 | 0.0089 | |
|
| 0.0073 | 3.6923 | 96 | 0.0085 | |
|
| 0.0059 | 3.9231 | 102 | 0.0077 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.0 |
|
- Transformers 4.45.1 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.0 |