--- base_model: google/gemma-2-9b library_name: peft license: gemma tags: - generated_from_trainer model-index: - name: lora-out results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: google/gemma-2-9b sequence_len: 1024 # base model weight quantization load_in_8bit: true # load_in_4bit: true # attention implementation flash_attention: true # finetuned adapter config adapter: lora lora_model_dir: lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral - embed_tokens - lm_head # if training fails, uncomment above # for details, see https://github.com/huggingface/peft/issues/334#issuecomment-1561727994 ### # Dataset Configuration: sqlqa ### # datasets: # - path: data.jsonl # type: alpaca datasets: - path: public_train_data.jsonl ds_type: json type: field_instruction: instruction field_input: input field_output: output format: |- [INST] {instruction} {input} [/INST] chat_template: gemma tokens: - "[INST]" - " [/INST]" - "[QL]" - " [/QL]" - "[EXPLANATION]" - " [/EXPLANATION]" # dataset formatting config special_tokens: pad_token: <|end_of_text|> val_set_size: 0.05 ### # Training Configuration ### # masks the input messages so that the model learns and understands the language w/o being reliant on the input train_on_inputs: false # random seed for better reproducibility seed: 117 # optimizer config optimizer: adamw_bnb_8bit learning_rate: 0.0001 lr_scheduler: cosine num_epochs: 4 micro_batch_size: 4 gradient_accumulation_steps: 1 warmup_steps: 10 # axolotl saving config dataset_prepared_path: last_run_prepared output_dir: ./lora-out # logging and eval config logging_steps: 1 eval_steps: 0.05 # training performance optimization config bf16: auto tf32: false gradient_checkpointing: true ### # Miscellaneous Configuration ### # when true, prevents over-writing the config from the CLI strict: false # "Don't mess with this, it's here for accelerate and torchrun" -- axolotl docs local_rank: # WANDB wandb_mode: wandb_project: wandb_watch: wandb_name: wandb_run_id: # Multi-GPU # deepspeed: /root/axolotl/deepspeed_configs/zero3_bf16.json # deepspeed: zero3_bf16.json # deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json deepspeed: fsdp: fsdp_config: ```

# lora-out This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0077 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 117 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7925 | 0.0385 | 1 | 2.0412 | | 1.6872 | 0.2308 | 6 | 1.6089 | | 0.6967 | 0.4615 | 12 | 0.6328 | | 0.3327 | 0.6923 | 18 | 0.2711 | | 0.1784 | 0.9231 | 24 | 0.1733 | | 0.1136 | 1.1538 | 30 | 0.1190 | | 0.0891 | 1.3846 | 36 | 0.0850 | | 0.0746 | 1.6154 | 42 | 0.0626 | | 0.0522 | 1.8462 | 48 | 0.0465 | | 0.033 | 2.0769 | 54 | 0.0282 | | 0.0333 | 2.3077 | 60 | 0.0225 | | 0.0171 | 2.5385 | 66 | 0.0203 | | 0.0172 | 2.7692 | 72 | 0.0144 | | 0.0095 | 3.0 | 78 | 0.0119 | | 0.0088 | 3.2308 | 84 | 0.0099 | | 0.0054 | 3.4615 | 90 | 0.0089 | | 0.0073 | 3.6923 | 96 | 0.0085 | | 0.0059 | 3.9231 | 102 | 0.0077 | ### Framework versions - PEFT 0.13.0 - Transformers 4.45.1 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.0