nitky's picture
Upload 23 files
c2cbf86 verified
|
raw
history blame
7.69 kB
---
base_model:
- nitky/Superswallow-70b-v0.3
- nitky/Swallow-70b-RP
tags:
- mergekit
- merge
language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
license: llama2
model_type: llama
---
# Superswallow-70b-RP-v0.3
**Important Notice:**
For personal and academic use only. Please check the description for details.
This model partially utilizes the parameters of Tulu V2 DPO finetuned based on Llama 2, so it may inherit the AI2 ImpACT license. Please use the model keeping in mind that there may be changes regarding the license if AI2 contacts me.
The [AI2 ImpACT license](https://allenai.org/impact-license) includes information about data artifacts and model artifacts, but does not cover the case of directly applying parts of the LLM parameters of a model artifact to other models. However, I respect their research and great work, so I will change the license immediately if AI2 contacts me.
## Description
This model is suitable for role-playing and storytelling.
This was created for personal and academic use only. This merge model uses only fine-tune models of Llama2, but some of the models used include those whose licenses for commercial use are unclear.
If there is a license problem, the rights holder should contact me directly. No license changes will be made due to contact from others.
## Test environment
This model was tested using [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main). I use preset `simple-1` and `Null preset` for Generation.
### Recommendation
Use `simple-1` settings:
- temperature: 0.7
- top_p: 0.9
- repetition_penalty: 1.15
- top_k: 20
### Tested `temperature` Range
- temperature: 0.3 - 1.0
It works fine in most cases, but depending on the prompt, the output may become unstable at the temperature around 1.0.
**If the output does not follow the user intent, please lower the temperature to 0.5 or less.**
### Tested `repetition_penalty` Range
- repetition_penalty: 1.0 - 1.15
It works fine in most cases, but depending on the prompt, the output may become unstable at the repetition_penalty around 1.0.
## Prompt template
All prompt templates are available as well.
### Tulu Style
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
### Swallow Style (Alpaca format)
```
以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。リクエストを適切に完了するための回答を記述してください。
### 指示:
{instruction}
### 応答:
```
## Use the instruct model
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "nitky/Superswallow-70b-RP-v0.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", load_in_4bit = True)
PROMPT_DICT = {
"prompt_input": (
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
),
"prompt_no_input": (
"以下に、あるタスクを説明する指示があります。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 応答:"
),
}
def create_prompt(instruction, input=None):
"""
Generates a prompt based on the given instruction and an optional input.
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
If no input is provided, it uses the 'prompt_no_input' template.
Args:
instruction (str): The instruction describing the task.
input (str, optional): Additional input providing context for the task. Default is None.
Returns:
str: The generated prompt.
"""
if input:
# Use the 'prompt_input' template when additional input is provided
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
else:
# Use the 'prompt_no_input' template when no additional input is provided
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.15,
top_k=20,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) and the SLERP merge method using [tokyotech-llm/Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf) as a base.
### Models Merged
The following models were included in the merge:
* [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b)
* [GOAT-AI/GOAT-70B-Storytelling](https://huggingface.co/GOAT-AI/GOAT-70B-Storytelling)
* [dreamgen/opus-v0.5-70b](https://huggingface.co/dreamgen/opus-v0.5-70b)
* [Doctor-Shotgun/lzlv-limarpv3-l2-70b](Doctor-Shotgun/lzlv-limarpv3-l2-70b)
* [LoRA] [alac/Waxwing-Storytelling-70B-LoRA](https://huggingface.co/alac/Waxwing-Storytelling-70B-LoRA)
### Configuration
The command example:
```bash
# please change the path and options according to your environment
mergekit-mega --cuda Superswallow-70b-RP-v0.3.yml ~/text-generation-webui/models
```
The following YAML configuration was used to produce this model:
```yaml
models:
- model: nitky/Superswallow-70b-v0.3
# no parameters necessary for base model
- model: nitky/Swallow-70b-RP
parameters:
density: 1
weight:
- filter: mlp
value: 0.1
- filter: self_attn
value: 0.25
- value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: nitky/Superswallow-70b-v0.3
dtype: bfloat16
name: Superswallow-70b-RP-v0.3-base
---
models:
- model: nitky/Superswallow-70b-v0.3
# no parameters necessary for base model
- model: nitky/Swallow-70b-RP
parameters:
density: 1
weight:
- filter: mlp
value: [0.25, 0.1, 0.25, 0.1, 0.25, 0.1, 0.25, 0.1, 0.1]
- filter: self_attn
value: [0.25, 0.25, 0.1, 0.25, 0.1, 0.25, 0.1, 0.25, 0.25]
- value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: nitky/Superswallow-70b-v0.3
dtype: bfloat16
name: Superswallow-70b-RP-v0.3-flavor
---
slices:
- sources:
- model: Superswallow-70b-RP-v0.3-base
layer_range: [0, 80]
- model: Superswallow-70b-RP-v0.3-flavor
layer_range: [0, 80]
merge_method: slerp
base_model: Superswallow-70b-RP-v0.3-base
parameters:
t: # model stabilization
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
name: Superswallow-70b-RP-v0.3
```