File size: 7,690 Bytes
c2cbf86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
---
base_model:
- nitky/Superswallow-70b-v0.3
- nitky/Swallow-70b-RP
tags:
- mergekit
- merge
language:
- en
- ja
library_name: transformers
pipeline_tag: text-generation
license: llama2
model_type: llama
---
# Superswallow-70b-RP-v0.3
**Important Notice:**
For personal and academic use only. Please check the description for details.
This model partially utilizes the parameters of Tulu V2 DPO finetuned based on Llama 2, so it may inherit the AI2 ImpACT license. Please use the model keeping in mind that there may be changes regarding the license if AI2 contacts me.
The [AI2 ImpACT license](https://allenai.org/impact-license) includes information about data artifacts and model artifacts, but does not cover the case of directly applying parts of the LLM parameters of a model artifact to other models. However, I respect their research and great work, so I will change the license immediately if AI2 contacts me.
## Description
This model is suitable for role-playing and storytelling.
This was created for personal and academic use only. This merge model uses only fine-tune models of Llama2, but some of the models used include those whose licenses for commercial use are unclear.
If there is a license problem, the rights holder should contact me directly. No license changes will be made due to contact from others.
## Test environment
This model was tested using [text-generation-webui](https://github.com/oobabooga/text-generation-webui/tree/main). I use preset `simple-1` and `Null preset` for Generation.
### Recommendation
Use `simple-1` settings:
- temperature: 0.7
- top_p: 0.9
- repetition_penalty: 1.15
- top_k: 20
### Tested `temperature` Range
- temperature: 0.3 - 1.0
It works fine in most cases, but depending on the prompt, the output may become unstable at the temperature around 1.0.
**If the output does not follow the user intent, please lower the temperature to 0.5 or less.**
### Tested `repetition_penalty` Range
- repetition_penalty: 1.0 - 1.15
It works fine in most cases, but depending on the prompt, the output may become unstable at the repetition_penalty around 1.0.
## Prompt template
All prompt templates are available as well.
### Tulu Style
```
<|user|>
Your message here!
<|assistant|>
```
For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
### Swallow Style (Alpaca format)
```
以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。リクエストを適切に完了するための回答を記述してください。
### 指示:
{instruction}
### 応答:
```
## Use the instruct model
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "nitky/Superswallow-70b-RP-v0.3"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="auto", load_in_4bit = True)
PROMPT_DICT = {
"prompt_input": (
"以下に、あるタスクを説明する指示があり、それに付随する入力が更なる文脈を提供しています。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 入力:\n{input}\n\n### 応答:"
),
"prompt_no_input": (
"以下に、あるタスクを説明する指示があります。"
"リクエストを適切に完了するための回答を記述してください。\n\n"
"### 指示:\n{instruction}\n\n### 応答:"
),
}
def create_prompt(instruction, input=None):
"""
Generates a prompt based on the given instruction and an optional input.
If input is provided, it uses the 'prompt_input' template from PROMPT_DICT.
If no input is provided, it uses the 'prompt_no_input' template.
Args:
instruction (str): The instruction describing the task.
input (str, optional): Additional input providing context for the task. Default is None.
Returns:
str: The generated prompt.
"""
if input:
# Use the 'prompt_input' template when additional input is provided
return PROMPT_DICT["prompt_input"].format(instruction=instruction, input=input)
else:
# Use the 'prompt_no_input' template when no additional input is provided
return PROMPT_DICT["prompt_no_input"].format(instruction=instruction)
# Example usage
instruction_example = "以下のトピックに関する詳細な情報を提供してください。"
input_example = "東京工業大学の主なキャンパスについて教えてください"
prompt = create_prompt(instruction_example, input_example)
input_ids = tokenizer.encode(
prompt,
add_special_tokens=False,
return_tensors="pt"
)
tokens = model.generate(
input_ids.to(device=model.device),
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.15,
top_k=20,
do_sample=True,
)
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
print(out)
```
## Merge Details
### Merge Method
This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) and the SLERP merge method using [tokyotech-llm/Swallow-70b-instruct-hf](https://huggingface.co/tokyotech-llm/Swallow-70b-instruct-hf) as a base.
### Models Merged
The following models were included in the merge:
* [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b)
* [GOAT-AI/GOAT-70B-Storytelling](https://huggingface.co/GOAT-AI/GOAT-70B-Storytelling)
* [dreamgen/opus-v0.5-70b](https://huggingface.co/dreamgen/opus-v0.5-70b)
* [Doctor-Shotgun/lzlv-limarpv3-l2-70b](Doctor-Shotgun/lzlv-limarpv3-l2-70b)
* [LoRA] [alac/Waxwing-Storytelling-70B-LoRA](https://huggingface.co/alac/Waxwing-Storytelling-70B-LoRA)
### Configuration
The command example:
```bash
# please change the path and options according to your environment
mergekit-mega --cuda Superswallow-70b-RP-v0.3.yml ~/text-generation-webui/models
```
The following YAML configuration was used to produce this model:
```yaml
models:
- model: nitky/Superswallow-70b-v0.3
# no parameters necessary for base model
- model: nitky/Swallow-70b-RP
parameters:
density: 1
weight:
- filter: mlp
value: 0.1
- filter: self_attn
value: 0.25
- value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: nitky/Superswallow-70b-v0.3
dtype: bfloat16
name: Superswallow-70b-RP-v0.3-base
---
models:
- model: nitky/Superswallow-70b-v0.3
# no parameters necessary for base model
- model: nitky/Swallow-70b-RP
parameters:
density: 1
weight:
- filter: mlp
value: [0.25, 0.1, 0.25, 0.1, 0.25, 0.1, 0.25, 0.1, 0.1]
- filter: self_attn
value: [0.25, 0.25, 0.1, 0.25, 0.1, 0.25, 0.1, 0.25, 0.25]
- value: 0 # fallback for rest of tensors.
merge_method: dare_ties
base_model: nitky/Superswallow-70b-v0.3
dtype: bfloat16
name: Superswallow-70b-RP-v0.3-flavor
---
slices:
- sources:
- model: Superswallow-70b-RP-v0.3-base
layer_range: [0, 80]
- model: Superswallow-70b-RP-v0.3-flavor
layer_range: [0, 80]
merge_method: slerp
base_model: Superswallow-70b-RP-v0.3-base
parameters:
t: # model stabilization
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
dtype: bfloat16
name: Superswallow-70b-RP-v0.3
``` |