BART-LARGE-DIALOGSUM
This model is a fine-tuned version of ainize/bart-base-cnn on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2520
- Rouge1: 45.9023
- Rouge2: 21.1512
- Rougel: 38.0547
- Rougelsum: 41.0074
- Gen Len: 53.296
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.5752 | 1.0 | 779 | 1.3340 | 44.5563 | 19.2131 | 36.7114 | 39.6611 | 50.176 |
1.3484 | 2.0 | 1558 | 1.2787 | 45.6688 | 20.9682 | 38.0344 | 40.8801 | 49.748 |
1.3058 | 3.0 | 2337 | 1.2614 | 45.9742 | 21.0722 | 38.2515 | 41.207 | 43.842 |
1.2514 | 4.0 | 3116 | 1.2537 | 46.0688 | 21.2466 | 38.5075 | 41.3072 | 45.766 |
1.2278 | 5.0 | 3895 | 1.2520 | 45.9023 | 21.1512 | 38.0547 | 41.0074 | 53.296 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 121
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.