File size: 2,823 Bytes
cdb02e6 ec7e02f 85381a2 ad4fc9c 85381a2 ec7e02f 85381a2 cdb02e6 85381a2 ec7e02f 8764853 de4d5cd 630b929 ec7e02f 85381a2 7658da5 85381a2 ad4fc9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
license: gpl-3.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- iamshnoo/alpaca-cleaned-albanian
- noxneural/lilium_albanicum_eng_alb
base_model: nisten/shqiponja-15b-v1
model-index:
- name: shqiponja-15
results: []
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/V0mt5q-kb0yFeeGFNGv0q.png)
**15.6b 2expert MoE**
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: nisten/shqiponja15
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: iamshnoo/alpaca-cleaned-albanian
type: alpaca
shards: 10
- path: noxneural/lilium_albanicum_eng_alb
shards: 20
type:
field_system: system
field_instruction: question
field_output: response
format: "[INST] {instruction} [/INST]"
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./alora-out
# - model.layers.2[7-9]+.block_sparse_moe.experts.*
# - model.layers.3[0-9]+.block_sparse_moe.experts.*
# - model.layers.2[7-9]+.b
</details><br>
```
# alora-out
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 80
- total_eval_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nisten__shqiponja-15b-v1)
| Metric |Value|
|---------------------------------|----:|
|Avg. |71.03|
|AI2 Reasoning Challenge (25-Shot)|66.38|
|HellaSwag (10-Shot) |85.26|
|MMLU (5-Shot) |64.62|
|TruthfulQA (0-shot) |56.81|
|Winogrande (5-shot) |84.06|
|GSM8k (5-shot) |69.07|
|