File size: 6,593 Bytes
73e516d
f30809a
 
 
73e516d
 
 
 
f30809a
73e516d
60ca02b
f30809a
60ca02b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f30809a
 
 
 
 
 
73e516d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
615d011
 
 
 
 
 
 
6059d43
615d011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6059d43
615d011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6059d43
615d011
 
 
 
 
 
 
 
 
6059d43
615d011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6059d43
615d011
 
f30809a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
base_model: [meta-llama/Meta-Llama-3-70B-Instruct]
merge_model: [NousResearch/Hermes-2-Pro-Llama-3-70B]

library_name: transformers
tags:
- mergekit
- merge
license: llama3
---
### Yoloing this 99-layer llamastein straight to the leaderboard wish me luck

> [!TIP]
>for 1bit quant download:
>
```bash
wget https://huggingface.co/nisten/llamagnific-3-87b-gguf/resolve/main/llamagnific_1bit_optimized_IQ1_L.gguf
```

for fun use i recommend this file:
```verilog
wget https://huggingface.co/nisten/llamagnific-3-87b-gguf/resolve/main/llamagnific_OPTIMAL_IQ_4_XS.gguf
```
if you're on linux you can download much faster with aria2 

```verilog
sudo apt install aria2
aria2c -x 8 -o llamagnific_OPTIMAL_IQ_4_XS.gguf https://huggingface.co/nisten/llamagnific-3-87b-gguf/resolve/main/llamagnific_OPTIMAL_IQ_4_XS.gguf
```
make a prompt file named prompt.txt and put this in it 

```verilog
<|im_start|>system{You are a hyperintelligent hilarious raccoon that solves everything via first-principles based resoning.}<|im_end|>
<|im_start|>user{Careful this is a trick question. Think first then when done thinking say ...done_thinking... and answer correctly: 9.11 or 9.9, which is greater?}
<|im_end|>assistant
```

That's it that's your prompt template, to run it in conversaion do this (add -ngl 99 or less if you have a 24gb gpu, i.e. add -ngl 50 for a 16gb etc, the model itself is 98 layers so this determines how many layers you offload to gpu, by default its 0 ): 

```c
./llama-cli --temp 0.4 -m llamagnific_OPTIMAL_IQ_4_XS.gguf -fa -co -cnv -i -f prompt.txt
```

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/K-ZX8HE_ph5eRlieFbEQj.png)


# base_model: [meta-llama/Meta-Llama-3-70B-Instruct]
# merge_model: [NousResearch/Hermes-2-Pro-Llama-3-70B]

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the passthrough merge method.

### Models Merged

The following models were included in the merge:
* /home/admin/meta70
* /home/admin/hermes2pro

### Configuration

The following YAML configuration was used to produce this model:

```yaml
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 15]
    model: /home/admin/meta70
- sources:
  - layer_range: [10, 69]
    model: /home/admin/hermes2pro
- sources:
  - layer_range: [55, 80]
    model: /home/admin/meta70
```

#TEST PROMPT IS LOOKING INTERESTING
> [!TIP]
> How to build a city on Mars? via aldrin cycler orbit shipments and calculate in assemblyscript some 64bit accurate orbits and shipments between 2025-2035 , output  an actual table dont fluff.
>

```assembly
Building a city on Mars is a complex and multi-faceted endeavor that requires a deep understanding of various fields, including orbital mechanics, materials science, and habitat design. Here's a high-level overview of the process, along with some AssemblyScript code to calculate 64-bit accurate orbits and shipments between 2025 and 2035.

**Step 1: Orbital Mechanics and Aldrin Cycler**

The Aldrin cycler is a type of spacecraft that uses a specific orbit to travel between Earth and Mars, making it an energy-efficient option for transporting people and cargo. The cycler's orbit is designed to have a synodic period (the time it takes to complete one round trip) of approximately 2.14 years, which is close to the Earth-Mars synodic period.

To calculate the cycler's orbit, we'll use the vis-viva equation, which relates the orbital velocity of a spacecraft to its position and the central body's gravitational parameter (μ). The equation is:

v = sqrt(μ \* (2/r - 1/a))

where:
v = orbital velocity
μ = standard gravitational parameter (for Earth, μ = 3.986004418e+14 m³/s²)
r = position vector (distance from the central body)
a = semi-major axis of the orbit

Here's an AssemblyScript function to calculate the cycler's orbit:


(import "env" "console_log" (func $console_log (result i32) (i32)))

(memory (import "env" "memory") 1)

(data (i32.const 0) "\0A\00\00\00")

@; Calculate the cycler's orbit
@; Args: r (f64) - position vector (distance from the central body)
@;        a (f64) - semi-major axis of the orbit
@; Returns: v (f64) - orbital velocity
(func $cycler_orbit (param $r f64) (param $a f64) (result f64)
  (f64.mul
    (f64.const 3.986004418e+14)
    (f64.sub
      (f64.div
        (f64.const 2)
        (f64.copy $r)
      )
      (f64.div
        (f64.const 1)
        (f64.copy $a)
      )
    )
  )
)

@; Example usage: Calculate the cycler's velocity at a position of 1.5 AU
@; (1 AU = 1.496e+11 m) and a semi-major axis of 2.4 AU
(f64.print
  (call $cycler_orbit
    (f64.mul (f64.const 1.5) (f64.const 1.496e+11))
    (f64.mul (f64.const 2.4) (f64.const 1.496e+11)))
  )
)


**Step 2: Assembly and Construction**

Once you've calculated the cycler's orbit, you'll need to assemble and construct the city on Mars. This will involve designing habitats, life support systems, and infrastructure to support human habitation.

**Step 3: Table of Shipments**

To create a table of shipments between 2025 and 2035, you'll need to determine the number of cyclers, the cargo capacity of each cycler, and the frequency of shipments. Here's a simple AssemblyScript function to calculate the total cargo capacity over a given period:


@; Calculate the total cargo capacity over a given period
@; Args: num_cyclers (i64) - number of cyclers
@;        cargo_capacity (f64) - cargo capacity of each cycler (in tons)
@;        start_year (i64) - start year (e.g., 2025)
@;        end_year (i64) - end year (e.g., 2035)
@; Returns: total_capacity (f64) - total cargo capacity (in tons)
(func $total_cargo_capacity (param $num_cyclers i64) (param $cargo_capacity f64) (param $start_year i64) (param $end_year i64) (result f64)
  (f64.mul
    (f64.conv_i64_f64
      (i64.sub
        (get_local $end_year)
        (get_local $start_year)
      )
    )
    (f64.conv_i64_f64
      (get_local $num_cyclers)
    )
    (f64.copy $cargo_capacity)
  )
)

@; Example usage: Calculate the total cargo capacity for 2 cyclers with a capacity of 500 tons each, between 2025 and 2035
(f64.print
  (call $total_cargo_capacity
    (i64.const 2)
    (f64.const 500)
    (i64.const 2025)
    (i64.const 2035)
  )
)


This is a high-level overview of the process, and there are many more details to consider when building a city on Mars. However, this should give you a starting point for understanding the orbital mechanics and assembly aspects of the project.
```