File size: 2,209 Bytes
dc490b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
language:
- en
thumbnail: https://cdn.pixabay.com/photo/2017/09/07/08/54/money-2724241__340.jpg
tags:
- text-classification
- sentiment-analysis
- finance-sentiment-detection
- finance-sentiment
license: apache-2.0
datasets:
- cyrilzhang/financial_phrasebank_split
metrics:
- Accuracy, F1 score
widget:
- text: "HK stocks open lower after Fed rate comments"
example_title: "HK stocks open lower"
- text: "US stocks end lower on earnings worries"
example_title: "US stocks end lower"
- text: "Muted Fed, AI hopes send Wall Street higher"
example_title: "Muted Fed"
---
## nickwong64/bert-base-uncased-finance-sentiment
Bert is a Transformer Bidirectional Encoder based Architecture trained on MLM(Mask Language Modeling) objective.
[bert-base-uncased](https://huggingface.co/bert-base-uncased) finetuned on the [cyrilzhang/financial_phrasebank_split](https://huggingface.co/datasets/cyrilzhang/financial_phrasebank_split) dataset using HuggingFace Trainer with below training parameters.
```
learning rate 2e-5,
batch size 8,
num_train_epochs=6,
```
## Model Performance
| Epoch | Training Loss | Validation Loss | Accuracy | F1 |
| --- | --- | --- | --- | --- |
| 6 | 0.034100 | 0.954745 | 0.853608 | 0.854358 |
## How to Use the Model
```python
from transformers import pipeline
nlp = pipeline(task='text-classification',
model='nickwong64/bert-base-uncased-finance-sentiment')
p1 = "HK stocks open lower after Fed rate comments"
p2 = "US stocks end lower on earnings worries"
p3 = "Muted Fed, AI hopes send Wall Street higher"
print(nlp(p1))
print(nlp(p2))
print(nlp(p3))
"""
output:
[{'label': 'negative', 'score': 0.9991507530212402}]
[{'label': 'negative', 'score': 0.9997240900993347}]
[{'label': 'neutral', 'score': 0.9834381937980652}]
"""
```
## Dataset
[cyrilzhang/financial_phrasebank_split](https://huggingface.co/datasets/cyrilzhang/financial_phrasebank_split)
## Labels
```
{0: 'negative', 1: 'neutral', 2: 'positive'}
```
## Evaluation
```
{'test_loss': 0.9547446370124817,
'test_accuracy': 0.8536082474226804,
'test_f1': 0.8543579048224414,
'test_runtime': 4.9865,
'test_samples_per_second': 97.263,
'test_steps_per_second': 12.233}
```
|