nickwong64 commited on
Commit
dc490b9
·
1 Parent(s): 3ee59e1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ thumbnail: https://cdn.pixabay.com/photo/2017/09/07/08/54/money-2724241__340.jpg
5
+ tags:
6
+ - text-classification
7
+ - sentiment-analysis
8
+ - finance-sentiment-detection
9
+ - finance-sentiment
10
+ license: apache-2.0
11
+ datasets:
12
+ - cyrilzhang/financial_phrasebank_split
13
+ metrics:
14
+ - Accuracy, F1 score
15
+ widget:
16
+ - text: "HK stocks open lower after Fed rate comments"
17
+ example_title: "HK stocks open lower"
18
+ - text: "US stocks end lower on earnings worries"
19
+ example_title: "US stocks end lower"
20
+ - text: "Muted Fed, AI hopes send Wall Street higher"
21
+ example_title: "Muted Fed"
22
+
23
+ ---
24
+ ## nickwong64/bert-base-uncased-finance-sentiment
25
+ Bert is a Transformer Bidirectional Encoder based Architecture trained on MLM(Mask Language Modeling) objective.
26
+ [bert-base-uncased](https://huggingface.co/bert-base-uncased) finetuned on the [cyrilzhang/financial_phrasebank_split](https://huggingface.co/datasets/cyrilzhang/financial_phrasebank_split) dataset using HuggingFace Trainer with below training parameters.
27
+ ```
28
+ learning rate 2e-5,
29
+ batch size 8,
30
+ num_train_epochs=6,
31
+ ```
32
+
33
+ ## Model Performance
34
+ | Epoch | Training Loss | Validation Loss | Accuracy | F1 |
35
+ | --- | --- | --- | --- | --- |
36
+ | 6 | 0.034100 | 0.954745 | 0.853608 | 0.854358 |
37
+
38
+
39
+
40
+ ## How to Use the Model
41
+ ```python
42
+ from transformers import pipeline
43
+ nlp = pipeline(task='text-classification',
44
+ model='nickwong64/bert-base-uncased-finance-sentiment')
45
+ p1 = "HK stocks open lower after Fed rate comments"
46
+ p2 = "US stocks end lower on earnings worries"
47
+ p3 = "Muted Fed, AI hopes send Wall Street higher"
48
+ print(nlp(p1))
49
+ print(nlp(p2))
50
+ print(nlp(p3))
51
+ """
52
+ output:
53
+ [{'label': 'negative', 'score': 0.9991507530212402}]
54
+ [{'label': 'negative', 'score': 0.9997240900993347}]
55
+ [{'label': 'neutral', 'score': 0.9834381937980652}]
56
+ """
57
+ ```
58
+
59
+ ## Dataset
60
+ [cyrilzhang/financial_phrasebank_split](https://huggingface.co/datasets/cyrilzhang/financial_phrasebank_split)
61
+
62
+ ## Labels
63
+ ```
64
+ {0: 'negative', 1: 'neutral', 2: 'positive'}
65
+ ```
66
+
67
+ ## Evaluation
68
+ ```
69
+ {'test_loss': 0.9547446370124817,
70
+ 'test_accuracy': 0.8536082474226804,
71
+ 'test_f1': 0.8543579048224414,
72
+ 'test_runtime': 4.9865,
73
+ 'test_samples_per_second': 97.263,
74
+ 'test_steps_per_second': 12.233}
75
+ ```
76
+