File size: 3,673 Bytes
9b91395
 
 
3e0f9ee
9b91395
 
 
 
 
 
 
 
b82063f
 
19451f5
 
9b91395
 
 
 
 
 
 
8164d1f
9b91395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b82063f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
tags:
- generated_from_trainer
- finance
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: finbert-tone-finetuned-finance-text-classification
  results: []
datasets:
- nickmuchi/financial-text-combo-classification
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finbert-tone-finetuned-finance-text-classification

This model is a fine-tuned version of [yiyanghkust/finbert-tone](https://huggingface.co/yiyanghkust/finbert-tone) on the [nickmuchi/financial-text-combo-classification](https://huggingface.co/datasets/nickmuchi/financial-text-combo-classification) dataset which is a combined dataset of financial_phrasebank,FinanceInc/auditor_sentiment and zeroshot/twitter-financial-news-sentiment.
It achieves the following results on the evaluation set:
- Loss: 0.6645
- Accuracy: 0.9097
- F1: 0.9102
- Precision: 0.9110
- Recall: 0.9097

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 141  | 0.3934          | 0.8431   | 0.8427 | 0.8456    | 0.8431 |
| No log        | 2.0   | 282  | 0.3214          | 0.8843   | 0.8843 | 0.8867    | 0.8843 |
| No log        | 3.0   | 423  | 0.3302          | 0.8882   | 0.8902 | 0.8965    | 0.8882 |
| 0.4444        | 4.0   | 564  | 0.3611          | 0.8980   | 0.8993 | 0.9026    | 0.8980 |
| 0.4444        | 5.0   | 705  | 0.4006          | 0.8975   | 0.8987 | 0.9014    | 0.8975 |
| 0.4444        | 6.0   | 846  | 0.4517          | 0.9037   | 0.9043 | 0.9057    | 0.9037 |
| 0.4444        | 7.0   | 987  | 0.5324          | 0.9027   | 0.9035 | 0.9057    | 0.9027 |
| 0.0406        | 8.0   | 1128 | 0.5308          | 0.9063   | 0.9074 | 0.9098    | 0.9063 |
| 0.0406        | 9.0   | 1269 | 0.5586          | 0.9081   | 0.9084 | 0.9089    | 0.9081 |
| 0.0406        | 10.0  | 1410 | 0.5783          | 0.9076   | 0.9080 | 0.9086    | 0.9076 |
| 0.0121        | 11.0  | 1551 | 0.5741          | 0.9115   | 0.9116 | 0.9121    | 0.9115 |
| 0.0121        | 12.0  | 1692 | 0.6288          | 0.9104   | 0.9108 | 0.9115    | 0.9104 |
| 0.0121        | 13.0  | 1833 | 0.6328          | 0.9050   | 0.9059 | 0.9078    | 0.9050 |
| 0.0121        | 14.0  | 1974 | 0.6887          | 0.9042   | 0.9054 | 0.9088    | 0.9042 |
| 0.0063        | 15.0  | 2115 | 0.6345          | 0.9086   | 0.9094 | 0.9109    | 0.9086 |
| 0.0063        | 16.0  | 2256 | 0.6545          | 0.9102   | 0.9103 | 0.9108    | 0.9102 |
| 0.0063        | 17.0  | 2397 | 0.6585          | 0.9086   | 0.9092 | 0.9103    | 0.9086 |
| 0.0033        | 18.0  | 2538 | 0.6676          | 0.9081   | 0.9087 | 0.9098    | 0.9081 |
| 0.0033        | 19.0  | 2679 | 0.6614          | 0.9110   | 0.9113 | 0.9119    | 0.9110 |
| 0.0033        | 20.0  | 2820 | 0.6645          | 0.9097   | 0.9102 | 0.9110    | 0.9097 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.1+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2