File size: 2,660 Bytes
32d181a 1230cf1 32d181a 1230cf1 32d181a a33c163 2d3d342 82e9b27 32d181a 3e44ec5 32d181a 6bf30b5 32d181a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
language: "en"
tags:
- financial-sentiment-analysis
- sentiment-analysis
metrics:
- f1
datasets:
- financial_phrasebank
- Kaggle Self label
- financial-classification
widget:
- text: "The USD rallied by 10% last night"
example_title: "Bullish Sentiment"
- text: "Covid-19 cases have been increasing over the past few months"
example_title: "Bearish Sentiment"
- text: "the USD has been trending lower"
example_title: "Mildly Bearish Sentiment"
model-index:
- name: distilroberta-finetuned-finclass
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilroberta-finetuned-finclass
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the [financial-phrasebank + Kaggle Dataset](https://huggingface.co/datasets/nickmuchi/financial-classification) dataset. The Kaggle dataset includes Covid-19 sentiment data and can be found here: [sentiment-classification-selflabel-dataset](https://www.kaggle.com/percyzheng/sentiment-classification-selflabel-dataset).
It achieves the following results on the evaluation set:
- Loss: 0.4463
- F1: 0.8835
## Model description
Model determines the financial sentiment of given text.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7309 | 1.0 | 72 | 0.3671 | 0.8441 |
| 0.3757 | 2.0 | 144 | 0.3199 | 0.8709 |
| 0.3054 | 3.0 | 216 | 0.3096 | 0.8678 |
| 0.2229 | 4.0 | 288 | 0.3776 | 0.8390 |
| 0.1744 | 5.0 | 360 | 0.3678 | 0.8723 |
| 0.1436 | 6.0 | 432 | 0.3728 | 0.8758 |
| 0.1044 | 7.0 | 504 | 0.4116 | 0.8744 |
| 0.0931 | 8.0 | 576 | 0.4148 | 0.8761 |
| 0.0683 | 9.0 | 648 | 0.4423 | 0.8837 |
| 0.0611 | 10.0 | 720 | 0.4463 | 0.8835 |
### Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.0
- Tokenizers 0.10.3
|