Aira-2-774M / README.md
nicholasKluge's picture
Update README.md
b725d89
|
raw
history blame
4.85 kB
metadata
license: apache-2.0
datasets:
  - nicholasKluge/instruct-aira-dataset
language:
  - en
metrics:
  - accuracy
library_name: transformers
tags:
  - alignment
  - instruction tuned
  - text generation
  - conversation
  - assistant
pipeline_tag: text-generation
widget:
  - text: <|startofinstruction|>What is your name?<|endofinstruction|>
    example_title: Greetings
  - text: >-
      <|startofinstruction|>Can you explain what is Machine
      Learning?<|endofinstruction|>
    example_title: Machine Learning
  - text: >-
      <|startofinstruction|>Do you know anything about virtue
      ethics?<|endofinstruction|>
    example_title: Ethics
  - text: >-
      <|startofinstruction|>How can I make my girlfriend
      happy?<|endofinstruction|>
    example_title: Advise
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.2
    top_k: 30
    top_p: 0.3
    max_length: 200
    length_penalty: 0.3
    early_stopping: true
co2_eq_emissions:
  emissions: 0.77
  source: CodeCarbon
  training_type: fine-tuning
  geographical_location: United States of America
  hardware_used: NVIDIA A100-SXM4-40GB

Aira-2-774M

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-774M is an instruction-tuned GPT-style model based on GPT-2. The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in Spaces.

Details

  • Size: 774,032,640 parameters
  • Dataset: Instruct-Aira Dataset
  • Language: English
  • Number of Epochs: 3
  • Batch size: 8
  • Optimizer: torch.optim.AdamW (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
  • GPU: 1 NVIDIA A100-SXM4-40GB
  • Emissions: 0.77 KgCO2 (Singapore)
  • Total Energy Consumption: 1.58 kWh

This repository has the notebook used to train this model.

Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

<|startofinstruction|>What is a language model?<|endofinstruction|>A language model is a probability distribution over a vocabulary.<|endofcompletion|>

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-774M')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-774M')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token, return_tensors="pt").to(device)

responses = aira.generate(**inputs,
    bos_token_id=tokenizer.bos_token_id,
    pad_token_id=tokenizer.pad_token_id,
    eos_token_id=tokenizer.eos_token_id,
    do_sample=True,
    top_k=50,
    max_length=500,
    top_p=0.95,
    temperature=0.7,
    num_return_sequences=2)

print(f"Question: 👤 {question}\n")

for i, response in  enumerate(responses):
    print(f'Response {i+1}: 🤖 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')

The model will output something like:

>>>Question: 👤 What is the capital of Brazil?

>>>Response 1: 🤖 The capital of Brazil is Brasília.
>>>Response 2: 🤖 The capital of Brazil is Brasília.

Limitations

🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.

🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes.

Evaluation

Model Average ARC HellaSwag MMLU TruthfulQA
Aira-2-774M 34.00 28.75 40.80 25.10 41.33
GPT-2-large 34.08 25.94 45.60 26.08 38.71

Cite as 🤗


@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://huggingface.co/nicholasKluge/Aira-2-774M},
  author = {Nicholas Kluge Corrêa},
  title = {Aira},
  year = {2023},
  publisher = {HuggingFace},
  journal = {HuggingFace repository},
}

License

The Aira-2-774M is licensed under the Apache License, Version 2.0. See the LICENSE file for more details.